PETRENKO O. Accuracy increasing methods improvement for metallic cylindrical resonator vibratory gyroscope

Українська версія

Thesis for the degree of Candidate of Sciences (CSc)

State registration number

0420U102169

Applicant for

Specialization

  • 05.11.03 - Гіроскопи та навігаційні системи

27-11-2020

Specialized Academic Board

Д 26.002.07

Publishing and Printing Institute of Igor Sikorsky Kyiv Polytechnic Institute

Essay

In the thesis the following new scientific results are obtained: 1. For the first time, a multi-parameter method of CVG scale factor correction is developed and implemented, which can be used during the CVG operation in the rate and in the differential modes. Ukraine patent have been obtained for this method. 2. Scientifically grounded analysis of a new design of a cylindrical resonator with holes on the walls of a cylinder having higher vibration resistance was first developed and carried out. 3. The multiparameter bias correction algorithm has been developed and implemented, which has advantages over the existing ones by accuracy. 4. For the first time experimental researches were carried out on a manufactured experimental sample of CVG with developed metal cylindrical resonator made of elenvar elloy, which showed high accuracy scale factor and bias drift correction under the action of temperature gradient, as well as high shock-vibration resistance of the sample. The practical significance of thesis results are: − comparison of two designs of metallic cylindrical resonators with holes on the bottom and on the wall of the cylinder and by calculations and computer simulation the advantages of the second design over the first one in the part of shock resistance have been substantiated; − аn analysis of the different geometries of the holes has been made. Their influence on the resonant oscillation frequencies of a cylindrical resonator is revealed. Recommendations for the geometry of the resonator and its elements have been developed; − improved design of the base on which the newly designed resonator with holes on the wall of the cylinder is installed; − the choice of electrodes used for oscillation excitation and measurement of the signals is experimentally substantiated; − the technique and equipment for workplace electrodeless measurement of metallic resonator dynamic parameters after its manufacture have been developed; − the influence of frequency mismatch, wave angle and positioning errors of the electrodes on the CVG bias and scale coefficient have been evaluated; − a new accessory design has been developed to attach the electrodes to the new resonator design; − the technique and equipment of the workplace for balancing the mass of the resonator on the fourth harmonic of the unbalance to reduce its frequency mismatch have been developed. The technique was tested in the manufactured sample of CVG; − the technique of measuring the angles of non-orthogonality of the sensitive axis to its mounting surface has been developed and implemented in the experimental sample of CVG; − the use of CVG to improve the accuracy of armament stabilization was analyzed; − improved CVG standing wave control algorithm block diagram, which provides a fast start of the gyroscope when it is turned on at any temperature in the range of operating temperatures; − the techniques for temperature correction of quadrature and angular rate phases, multiparameter correction of CVG bias and scale factor have been developed and tested on experimental sample of CVG, which leads to an increase in the accuracy of measuring angular rate under temperature gradients; − the experimental results showed that the CVG with a metallic resonator is resistant to multiple shocks with amplitude 100 g and its bias is slightly dependent on the shock amplitude and does not exceed 5×10−3 deg/s. The bias sensitivity to vibration perturbations is 2.5×10−3 deg/s/g.

Files

Similar theses