Onishchenko A. Fractal analysis in methods of remote radio sounding of geospace

Українська версія

Thesis for the degree of Candidate of Sciences (CSc)

State registration number

0423U100183

Applicant for

Specialization

  • 01.04.03 - Радіофізика

20-10-2023

Specialized Academic Board

Д64.051.02

V.N. Karazin Kharkiv National University

Essay

The problem of increasing the informativeness of remote radio sounding methods for radiophysical investigations of the geospace by using fractal and multifractal analysis methods has been solved. New complex methods of fractal analysis of signals and processes, namely the generalized fractal analysis (GFA), the dynamic fractal analysis (DynFA) and the corrective function (CF) method are proposed. The GFA method significantly exceeds other existing methods of monofractal analysis in terms of informativeness, as it offers the study of sixteen characteristics instead of the traditional two or three similar ones. The DynFA method for the first time combines the capabilities of the fractal and time-frequency analysis methods, and the estimates obtained in one of them are used to improve the results of the other. Being a universal method, the CF method allows to increase the accuracy of the assessment of fractal and multifractal characteristics of the investigated signals and processes in the methods of fractal and multifractal analyzes. Using the created new model monofractal and multifractal signals, the features, advantages and disadvantages of the new methods are demonstrated. Using the WTMM and MF DFA methods, as well as new numerical characteristics based on the function of the multifractal spectrum (the asymmetry coefficient and the index of its relative width, as well as the dimension of the multifractal support), a multifractal analysis of a set of original fractal and multifractal signal models was performed. New convenient formats for presenting analysis results have been developed. Features of multifractal analysis of monofractal, multifractal and non-fractal signals and processes are identified, appropriate recommendations for practitioners are formulated. Original algorithms for mono- and multifractal analysis have been developed. With their application, a study of the fractal characteristics of experimental data obtained in the methods of remote radio sounding of the geospace was performed. Being generated by a unique powerful natural ultra-wideband process with changing mean frequency (ChMF UWB), the gravitational wave signals were appeared to be fractal UWB (FUWB) ones with complex non-stationary multifractal structure. However, currently, it is not possible to unequivocally state whether the received fractal component is part of the gravitational wave signal or whether it is noise of a completely different physical origin. Both the direct and the reversed signals of the infrasound waves that occurred during the fall of the Chelyabinsk meteoroid were found to contain a pair of the fractal ChMF UWB processes with complex non-stationary multifractal structure. Being multifractal, all four ChMF UWB processes were appeared to be almost anywhere antipersistent. Most likely, the first processes in each pair are related to the generation and propagation of an explosive shock wave, and the second processes are explained by the generation and propagation of a ballistic wave. The temporal variations of the Earth's electromagnetic field that were observed during the super-powerful geospace storm on September 7-8, 2017 were found to contain several ultra-short and ChMF UWB processes with typical multifractal structure and therefore they can be classified as the FUWB processes. All disturbances detected were appeared to be multifractal and almost anywhere antipersistent. The temporal variations of the Earth's electromagnetic field that were detected during the powerful earthquake in Turkey on January 20, 2020 were shown to be the FUWB processes. Peculiarities of the temporal dynamics of fractal and multifractal characteristics, which may be associated with the harbingers of earthquakes, have been revealed. Dispersion distortions of high-frequency fractal ultra-wideband signals that occur during their propagation in the near-to- Earth space have been investigated.

Research papers

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Fractal Analysis of the Fractal Ultra-Wideband Signals // Problems of Atomic Science and Technology. Series ‘Plasma Electronics and New Methods of Acceleration’. 2015. No. 4(98), Iss. 9. P. 248 – 251.

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Multi-Fractal Analysis of the Gravitational Waves // Vestnik of V. N. Karazin Kharkiv National University, Series Physics. 2017. No. 26. P. 33 –39.

. Chernogor L. F., Garmach K. P., Lazorenko O. V., Onishchenko A. A. Multi-Fractal Analysis of the Earth’s Electromagnetic Field Variations Caused by the Powerful Geospace Storm Occurred on September 7 – 8, 2017// Problems of Atomic Science and Technology. Series ‘Plasma Electronics and New Methods of Acceleration’. 2018. No. 4(116), Iss. 10. P. 118 – 121.

Onishchenko A., Chernogor L., Lazorenko O. Dynamical Fractal Analysis of the Acoustic Ultra-Wideband Signal Caused by the Chelyabinsk Meteoroid // Eskişehir Technical Univ. J. of Sci. and Tech. A. Appl. Sci. and Eng. 2019. Vol. 20. P. 188 – 192.

Лазоренко О. В., Онищенко А. А., Чорногор Л. Ф. Метод коригуючої функції для фрактального аналізу // Радіотехніка. Всеукр. міжвід. наук.-техн. зб. 2022. № 210. С. 177 – 187.

Onishchenko A., Chernogor L., Lazorenko O. Fractal and Multi-Fractal Analyses of the Geomagnetic Field Variations Caused by the Earthquake on January 24, 2020 in Turkey // Journal of Natural Science and Technologies. 2022. Vol. 1, No. 1. P. 56 – 61.

Лазоренко О. В., Онищенко А. А., Чорногор Л. Ф. Мультифрактальний аналіз мо-дельних фрактальних і мультифрактальних сигналів // Радіотехніка. Всеукр. між-від. наук.-техн. зб. 2022. № 211. С. 74 – 85.

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Dispersive Distortions of the Fractal Ultra-Wideband Signals in Plasma Media // Problems of Atomic Science and Technology. Series ‘Plasma Electronics and New Methods of Acceleration’. 2018. No. 4(116), Iss. 10. P. 135 – 138.

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Fractal Analysis of Model Fractal Ultra-Wideband Signals // 7th International Conference on Ultrawideband and Ultrashort Impulse Signals: Proceedings of 7th International Conference on Ultrawideband and Ultrashort Impulse Signals, 15 – 19 September 2014, Kharkiv, 2014, P. 112 – 115.

Онищенко А. А., Лазоренко О. В. Надширокосмугові сигнали і фрактальний аналіз // Наукова конференція професорсько-викладацького складу, аспірантів і здобу-вачів: Матеріали підсумкової наукової конференції професорсько-викладацького складу, аспірантів і здобувачів, (Харків, 23 – 24 березня 2016 р.). Харків: ХНАУ імені В. В. Докучаєва, 2016. С. 112 – 113.

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. New Models of the Fractal Ultra-Wideband Signals // UWBUSIS’2016: Proceedings of 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, 5 – 11 September 2016, Odessa, 2016, P. 89 – 92.

Лазоренко О. В., Чорногор Л. Ф., Онищенко А. А. Дослідження гравітаційної хвилі за допомоги фрактального та мультифрактального аналізів // Практичне застосу-вання нелінійних динамічних систем в інфокомунікаціях: Матеріали VI Міжнарод-ної науково-практичної конференції (I Міжнародного симпозіуму) 9-11 листопада 2017 р., Чернівці, Україна, 2017. С. 136 – 137.

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Fractal Analysis of the Gravita-tional Waves as a Unique Ultra-Wideband Process // UWBUSIS’2018: Proceedings of 9th International Conference on Ultrawideband and Ultrashort Impulse Signals, 4–7 September 2018, Odessa, 2018, P. 34 – 39.

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Multi-Fractal Analysis of the Acoustic Ultra-Wideband Signal Caused by the Chelyabinsk Meteoroid // UWBUSIS’2018: Proceedings of 9th International Conference on Ultrawideband and Ultrashort Impulse Signals, 4 – 7 September 2018, Odessa, 2018, P. 123 – 126.

Лазоренко О. В., Гармаш К. П., Онищенко А. А., Черногор Л. Ф. Вариации геомаг-нитного поля Земли, сопровождавшие геокосмические бури 7 – 14 сен-тября 2017 г.// 18 Української конференції з космічних досліджень: тези 18 Української конфе-ренції з космічних досліджень 17 – 20 вересня 2018 р., Київ, 2018. С. 34

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Dynamical Fractal Analysis of the Acous-tic Ultra-Wideband Signal Caused by the Chelyabinsk Meteoroid // ICONAT-2019: Program and Abstract Book of International Conference on Natural Science and Tecnology, 18 – 20 September 2019, Kharkiv, 2019. P. 42

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Time-Frequency and Fractal Analyses of the Earth’s Magnetic Field Variations Appeared During Powerful Geospace Storms Took Place in September 2017 // Astronomy and Space in the Kyiv University: Book of Abstracts International Conference, (Kyiv, 25-28 May 2021). Kyiv: Taras Shevchenko National University of Kyiv. As-tronomical Observatory, 2021. P. 90 – 91.

Onishchenko A., Chernogor L., Lazorenko O. Fractal and Multi-Fractal Analyses of the Geomagnetic Field Variations Caused by the Earthquake on January 24, 2020 in Turkey // ICONAT-2022: Conference Book of IV. Int. Conf. on Natural Science and Technology , 24 – 26 August 2022, Antalya, 2022. 74 p.

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Fractal Analysis in Space Physics // Astronomy and Space Physics: Proceedings of International Conference 18 – 20 October 2022, Kyiv, 2022. P. 77 – 78.

Chernogor L. F., Lazorenko O. V., Onishchenko A. A. Fractal Analysis in Problems of the Applied Physics // Electronics and Applied Physics: Book of Proceedings of the XVIII International Conference, 18 – 22 October 2022, Kyiv, 2022. P. 148 – 149.

Files

Similar theses