Alekseev S. Surface chemistry, functionalization methods and properties of silicon and silicon carbide based nanomaterials.

Українська версія

Thesis for the degree of Doctor of Science (DSc)

State registration number

0523U100223

Applicant for

Specialization

  • 01.04.18 - Фізика і хімія поверхні

07-12-2023

Specialized Academic Board

Д 26.210.01

Chuiko Institute of Surface Chemistry of NAS of Ukraine

Essay

The thesis is devoted to complex studies of the nanomaterials based on Si, SiC and carbon fluorooxide nanoparticles. It presents the nanomaterials surface chemistry, reactivity and functionalization reactions, methods of morphology control, new approaches to the analysis of surface groups and applications of above nanomaterials in sensorics, catalysis, biomedicine and other fields. Chemical transformations of porous silicon (PSi) surface groups under hydrolytic oxidation are studied and applicability of PSi for chemical hydrogen storage is analyzed. New methods of PSi functionalization with alkylsilanol, ion-exchanging and surface-active terminations are introduced. Study of grafted organic group’s thermal decomposition allows developing new approach of chemically functionalized materials analysis based on temperature-desorption mass-spectrometry. Method of IR-interferometry has been elaborated for quantification of grafted groups in optically homogeneous PSi layers. Laser desorption ionization mass-spectrometry substrates, optical sensor nanostructures and nanochromatographic columns based on functionalized PSi were produced and tested. Size tuning of silicon nanoparticles (Si NPs) by ultrafiltration or photochemical etching in HF solution resulted in noticeable UV-shift of the photoluminescence (PL) emission maximum due to quantum confinement effect. Photochemical hydrosilylation of Si NPs in a presence of HF allowed to get alkylated Si NPs with defect-free surface giving stable sols in non-polar solvents and possessing increased PL quantum yield (20% vs 5% for non-modified Si NPs). Study of the hydrothermal reaction of aminopropyltrimetoxysilane with citric acid allowed lighting up a huge wave of misinterpretations in scientific literature regarding formation of Si NPs under these conditions: no Si NPs formed, while photoluminescent polyorganosiloxane NPs form instead due to polycondensation and Mailard-type reactions. Methods of mesoporous SiC synthesis based on template thermochemical synthesis (nanocasting) and electrochemical etching of polycrystalline SiC plates are introduced. The factors of morphology parameters control, regularities and mechanisms of porosification processes are analyzed. Chemical composition of the oxide free SiC surface functional groups and their reactivity are determined. Simple method of SiC NPs size tuning based on controlled thermal oxidation and oxide removal is proposed. The catalyst of Fischer-Tropsch synthesis, based on 9 nm Co NPs inside the pores of porous SiC is superior to conventional Co/SiO2 by the selectivity and stability due to high thermal conductivity and strong immobilization of Co NPs inside the SiC pores. Also, porous SiC layers could be used as impedance sensors, while the SiC NPs for biovisualization via 2nd harmonic generation. An anodization of SiC in HF solutions resulted in two nanostructured products: porous SiC and carbonfluorooxide (CFO). The CFO consisted of one to few atomic layers thick disk-like nanoparticles/macromolecules with 4 – 20 nm diameter, composed by typical “organic” fragments: relatively small aromatic domains, C–F bonds and polymaleic acid like chains, bearing carboxylic groups. Having photoluminescent properties and low cytotoxicity, the CFO is efficient in biolabelling of living cells. The CFO distribution inside the cell governed by the CFO chemical functionalization, while the sonosensitizing properties of the CFO allowed selective cell destruction under the ultrasound action. Keywords: nanoporous materials, nanoparticles, silicon, silicon carbide, electrochemical etching, sensors, catalysis, bioimaging.

Research papers

1. Барабаш, Р. Н.; Алексеев, С. А.; Зайцев, В. Н.; Барбье, Д. Устойчивость к окислению и модифицирование винилсиланами пористого кремния. Укр. хим. журн. 2006, (10), 78–84.

2. Mery, E.; Alekseev, S. A.; Zaitsev, V. N.; Barbier, D. Covalent Grafting of Ion-Exchanging Groups on Porous Silicon for Microsystem Applications. Sensor. Actuat. B-Chem. 2007, 126 (1), 120–125.

3. Суворова, А. О.; Алексеев, С. А.; Зайцев, В. Н. Химическое модифицирование поверхности пористого кремния группами полиоксиэтилированных спиртов. Хім. Фіз. Технол. Пов. 2011, 2 (1), 53–60.

4. Alekseev, S. A.; Zaitsev, V. N.; Fraissard, J. Organosilicas with Covalently Bonded Groups under Thermochemical Treatment. Chem. Mater. 2006, 18 (7), 1981–1987.

5. Alekseev, S. A.; Lysenko, V.; Zaitsev, V. N.; Barbier, D. Application of Infrared Interferometry for Quantitative Analysis of Chemical Groups Grafted onto the Internal Surface of Porous Silicon Nanostructures, J. Phys. Chem. C, 2007, 111 (42), 15217–15222.

6. Serdiuk, T.; Lysenko, V.; Alekseev, S.; Skryshevsky, V. A. Size Tuning of Luminescent Silicon Nanoparticles with Mesoporous Silicon Membranes, J. Colloid Interf. Sci. 2011, 364, 65–70.

7. Ryabchikov, Y. V.; Alekseev, S. A.; Lysenko, V.; Bremond, G.; Bluet, J.-M. Photoluminescence of Silicon Nanoparticles Chemically Modified by Alkyl Groups and Dispersed in Low-Polar Liquids, J. Nanopart. Res. 2013, 15 (4), 1535 (9 pp).

8. Oliinyk, B. V.; Lysenko, V.; Alekseev, S. Determining the Impact of Hydrofluoric Acid on Surface States of As-Prepared and Chemically Modified Si Nanocrystals, RSC Adv. 2016, 6 (5), 3723–3728.

9. Oliinyk, B. V.; Korytko, D.; Lysenko, V.; Alekseev, S. Are Fluorescent Silicon Nanoparticles Formed in a One-Pot Aqueous Synthesis? Chem. Mater. 2019, 31 (18), 7167–7172.

10. Lysenko, V.; Bidault, F.; Alekseev, S.; Zaitsev, V.; Barbier, D.; Turpin, C.; Geobaldo, F.; Rivolo, P.; Garrone, E. Study of Porous Silicon Nanostructures as Hydrogen Reservoirs, J. Phys. Chem. B. 2005, 109 (42), 19711–19718.

11. Litvinenko, S.; Alekseev, S.; Lysenko, V. Venturello, A.; Geobaldo, F.; Gulina, L.; Kuznetsov, G.; Tolstoy, V.; Skryshevsky, V.; Garrone, E.; Barbier, D. Hydrogen Production from Nano-Porous Si Powder Formed by Stain Etching. Int. J. Hydrogen Energ., 2010, 35 (13), 6773–6778.

12. Manilov, A. I.; Alekseev, S. A.; Skryshevsky, V. А.; Litvinenko, S. V.; Kuznetsov, G. V.; Lysenko, V. Influence of Palladium Particles Impregnation on Hydrogen Behavior in Meso-Porous Silicon. J. Alloy. Compd. 2010, 492, 466–472.

Mussabek, G.; Alekseev, S. A.; Manilov, A. I.; Tutashkonko, S.; Nychyporuk, T.; Shabdan, Y.; Amirkhanova, G.; Litvinenko, S. V.; Skryshevsky V. A.; Lysenko, V. Kinetics of Hydrogen Generation from Oxidation of Hydrogenated Silicon Nanocrystals in Aqueous Solutions, Nanomaterials, 2020, 10 (7), 1–14.

Shmygol, I. V.; Alekseev, S. A.; Lavrinenko, O. Yu.; Vasilyeva, N. S.; Zaitsev, V. N.; Barbier, D.; Pokrovsky, V. A. Chemically Modified Porous Silicon for Laser Desorption/Ionization Mass Spectrometry of Ionic Dyes. J. Mass Spectrom. 2009, 44 (8), 1234–1240.

15. Шмыголь, И. В.; Севериновская, О. В.; Васильева, Н. C.; Алексеев, С. А.; Покровский, В.А. Изучение адсорбции гистамина и аргинина на различных видах поверхности пористого кремния методом лазерной десорбционной ионизации масс-спектрометрии. в кн. Химия, физика и технология поверхности / Под. ред. П.П. Горбика. К.: 2007. – Вып. 13. – С. 341–348.

16. Chapron, J.; Alekseev, S.; Lysenko, V.; Zaitsev, V. N.; Barbier, D. Analysis of Interaction Between Chemical Agents and Porous Si Nanostructures Using Optical Sensing Properties of Infra-Red Rugate Filters. Sensor. Actuat. B-Chem. 2007, 120 (2), 706–711.

17. Méry, E.; Alekseev, S.; Portet-Koltalo, F.; Morin, C.; Barbier, D.; Zaitsev, V.; Desbène, P. L. Porous Silicon Based Microdevice for Reversed Phase Liquid Chromatography, Phys. Status Solidi C 2009, 6 (7), 1777–1781.

18. Alekseev, S. A.; Korytko, D. M.; Gryn, S.,; Iablokov, V. V.; Khainakova, O. A.; Garcia-Granda, S.; Kruse, N. Silicon Carbide with Uniformly Sized Spherical Mesopores from Butoxylated Silica Nanoparticles Template, J. Phys. Chem. C 2014, 118 (41), 23745–23750.

19. Korytko, D.; Gryn, S.; Alekseev, S.; Iablokov, V.; Khaynakova, O.; Zaitsev, V.; Bezverkhyy, I.; Kruse, N. Mesoporous Silicon Carbide via Nanocasting of Ludox® Xerogel, RSC Adv. 2016, 6, 108828–108839

20. Gryn, S.; Nychyporuk, T.; Bezverkhyy, I.; Korytko, D.; Iablokov, V.; Lysenko, V.; Alekseev, S. Mesoporous SiC with Potential Catalytic Application by Electrochemical Dissolution of Polycrystalline 3C-SiC, ACS Appl. Nano Mater., 2018, 1 (6), 2609–2620.

21. Alekseev, S.; Botsoa, J.; Zaitsev, V. N.; Barbier, D. Fourier Transform Infrared Spectroscopy and Temperature-Programmed Desorption Mass Spectrometry Study of Surface Chemistry of Porous 6H-SiC. Chem. Mater. 2007, 19 (9), 2189–2194

22. Iablokov, V.; Alekseev, S. A.; Gryn, S.; Bezverkhyy, I.; Zaitsev, V.; Kovarik, L.; Visart de Bocarme, T.; Kruse, N. Superior Fischer-Tropsch Performance of Uniform Cobalt Nanoparticles Deposited into Mesoporous SiC. J. Catal. 2020, 383, 297–303.

23. Milovanov, Y. S.; Skryshevsky, V. A.; Gavrilchenko, I. V.; Kostiukevych, O. M.; Gryn, S. V.; Alekseev, S. A. Ethanol Gas Sensing Performance of Electrochemically Anodized Freestanding Porous SiC, Diam. Relat. Mater. 2019, 91, 84–89.

24. Alekseev, S.; Shamatulskaya, E.; Volvach, M.; Gryn, S.; Korytko, D.; Bezverkhyy, I.; Iablokov, V.; Lysenko, V. Size and Surface Chemistry Tuning of Silicon Carbide Nanoparticles, Langmuir, 2017, 33 (47), 13561–13571.

25. Boksebeld, M.; Kilin, V.; Géloën, A.; Ceccone, G.; Jaffal, A.; Schmidt, C.; Alekseev, S.; Lysenko, V.; Wolf, J. P.; Bonacina, L.; Souteyrand, E.; Chevolot, Y.; Monnier, V. Folate-Modified Silicon Carbide Nanoparticles as Multiphoton Imaging Nanoprobes for Cancer-Cell-Specific Labeling, RSC Adv. 2017, 7, 27361–27369.

26. Nazarkovsky, M.; Alekseev, S.; Huczko, A.; Zaitsev, V.; Dupont, J.; Kai, J.; Xing, Y.; Scofield, A. L.; Chacón, G.; Carreira, R. S. Structural and Photocatalytic Properties of Silicon Carbide Powder and Nanowires Modified by Gold Nanoparticles, Res. Chem. Intermediat. 2019, 45 (8), 4081–4100.

27. Alekseev, S.; Korytko, D.; Iazykov, M.; Khainakov, S.; Lysenko, V. Electrochemical Synthesis of Carbon Fluorooxide Nanoparticles from 3C-SiC Substrates, J. Phys. Chem. C 2015, 119 (35), 20503–20514.

28. Zakharko, Yu.; Botsoa, J.; Alekseev, S.; Lysenko, V.; Bluet, J.-M.; Marty, O.; Skryshevsky, V. A.; Guillot. G. Influence of Chemical Environments on Luminescent Properties of 3C-SiC Nanoparticles. J. Appl. Phys. 2010, 107, 013503 (7 pp).

29. Sui, N.; Monnier, V.; Zakharko, Yu.; Chevolot, Y.; Alekseev, S.; Bluet, J.-M.; Lysenko, V.; Souteyrand, E. Plasmon-Controlled Narrower and Blue-Shifted Fluorescence Emission in (Au@SiO2)SiC Nanohybrids. J. Nanopart. Res., 2012, 14, 1004 (10 pp).

30. Serdiuk, T.; Lysenko, V.; Alekseev, S.; Skryshevsky V. A.; Geloen, A. Charge-driven selective localization of fluorescent nanoparticles in live cells, Nanotechnology, 2012, 23, 315101 (8 pp).

31. Serdiuk, T.; Alekseev, S.; Lysenko, V.; Skryshevsky, V.; Géloën, A. Trypsinization-Dependent Cell Labeling with Fluorescent Nanoparticles, Nanoscale Res. Lett. 2014, 9, 568 (5 pp).

32. Serdiuk, T.; Bakanovich, I.; Lysenko, V.; Alekseev, S. A.; Skryshevsky, V. A.; Afonin, S.; Berger, E.; Géloën A.; Komarov, I. V. Delivery of SiC-based Nanoparticles into Live Cells Driven by Cell-Penetrating Peptides SAP and SAP-E, RSC Adv. 2015, 5 (26), 20498-20502.

33. Kharin, A.; Syshchyk, O.; Geloen, A.; Alekseev, S.; Rogov, A.; Lysenko V.; Timoshenko, V. Carbon fluoroxide nanoparticles as fluorescent labels and sonosensitizers for theranostic applications, Sci. Technol. Adv. Mater. 2015, 16, 044601 (6 pp).

Патент: 1. Brevet français N°1262879, Lytvynenko, S.; Alekseyev, S.; Lysenko V., Skryshevsky, V. Procédé et dispositif pour caractériser un milieu fluide à l’aide d’un substrat semi-conducteur. - Déposé le 27/12/2012 et intitulé. WO2014/102484 A1.

Розділи в монографіях: 1. Alekseev, S. Silicon Nanostructures for Laser Desorption/Ionization Mass Spectrometry, Chapter 13 in Vol. II of “Porous Silicon: From Formation to Application: Biomedical and Sensor Applications” ed. Korotcenkov, G. CRC Press, Taylor and Francis: Boca Raton, USA, 2016, 239–264.

2. Komarov, I.; Alekseev, S. Use of Porous Silicon for In Vivo Imaging Techniques, Chapter 20 in Vol. II of “Porous Silicon: From Formation to Application: Biomedical and Sensor Applications” ed. Korotcenkov, G. CRC Press, Taylor and Francis: Boca Raton, USA, 2016, 379–398.

3. Bluet, J.-M.; Botsoa, J.; Zakharko, Y.; Geloen, A.; Alekseev, S.; Marty, O.; Mognetti, B.; Patskovsky, S.; Rioux, D.; Lysenko, V. SiC as a Biocompatible Marker for Cell Labeling, Chapter 11 in “Silicon Carbide Biotechnology”, ed. Saddow, S. Elsevier: Amsterdam, Netherlands, 2012, 377–429.

4. Skryshevsky, V. A.; Serdiuk, T.; Zakharko, Y. E.; Alekseev, S. A.; Géloën, A.; Lysenko, V. Preparation, Luminescent Properties and Bioimaging Application of Quantum Dots Based on Si and SiC in “Functional Nanomaterials and Devices for Electronics Sensors and Energy Harvesting” ed. Nazarov, A. et al., Springer International Publishing, 2014, 323–348.

Тези доповідей: 1. Barabash, R. M.; Alekseev, S. A.; Zaitsev, V. N.; Barbier, D. Dependence of oxidation stability of porous silicon on its surface state. IX Ukrainian-Polish Symposium “Theoretical and Experimental Studies of Interfacial Phenomena and their Technological Applications”, 5-9 September 2005, Sandomierz, Poland. PP. 5 – 7. 2. Barabash, R. M.; Alekseev, S. A.; Zaitsev, V. N.; Barbier, D. Effect of surface wettability on oxidation stability of porous silicon. International Conference “Nanomaterials in Chemistry, Biology, Medicine”, 15-16 September 2005, Kyiv, Ukraine. P. 131. 3. Alekseev, S. A.; Mery, E.; Zaitsev V. N.; Barbier, D. Covalent grafting of alkanesulfonic acid groups on porous silicon for on-chip ion chromatography development. International Conference “E-MRS 2006 Spring Meeting”, Symposium G “Functional Materials for Micro and Nanosystems”, May 29 – June 2, 2006, Nice, France. G07 08. 4. Korytko, D.; Alekseev, S.; Iablokov, V.; Khaynakova, O.; Garcia-Granda, S.; Kruse, N. Cobalt/silicon carbide (porous) hybrid material as an active Fischer – Tropsch catalyst. International Conference “E-MRS 2014 Spring Meeting”, Symposium Q “Hybrid Materials Engineering in Biology, Chemistry and Physics”, 26–30 May 2014, Lille, France. Q, PII-20. 5. Alekseev, S. A.; Zaitsev, V. N.; Botsoa, J.; Barbier, D. Surface chemistry of porous 6H-SiC. 2nd International Conference on Surfaces, Coatings and Nanostructured Materials, 9–11 July 2007, Algarve, Portugal, PP. 109 – 110. 6. Zaitsev, V. N.; Alekseev, S. A. Nano-porous silicon as possible future for miniature analytical devices. International Symposium “Supramolecular and NanoChemistry: Toward Applications” (SNCTA-2008), 25–29 August 2008, Kharkov, Ukraine. I-16. 7. Alekseev, S., Romanenko, J.; Shmygol, I.; Lysenko, V.; Zaitsev, V.; Pokrovsky, V.; Fraissard J. Porous silicon with gold nanoparticles as laser desorption/ionization mass spectrometry platform. COST Chemistry D36 3rd Workshop “Structure-Performance Relationships at the Surface of Functional Materials”, 21–23 October 2009, Benahavis, Spain. PP. 161-162. 8. Alekseev, S. A.; Zaitsev, V. N.; Mery, E.; Barbier, D. Porous silicon based reversed phase HPLC microdevice. 6th International Conference “Porous Semiconductors Science and Technology” (PSST 2008), 10–14 March 2008, Mallorca, Spain, P2-25. 9. Alekseev, S. A.; Zaitsev, V. N.; Botsoa J.; Barbier, D. Chemical transformations of porous 6H-SiC surface species, 6th International Conference Porous Semiconductors Science and Technology (PSST 2008), 10–14 March 2008, Mallorca, Spain. O10-07. 10. Skryshevsky, V. A.; Serdiuk, T.; Alekseev, S.; Lysenko, V.; Geloen, A. Application of electrochemically etched SiC for fluorescent bioimaging and therapy. 9th International Conference “Porous Semiconductors Science and Technology” (PSST 2014), 9–14 March 2014, Alicante-Benidorm, Spain. 06-O-05. 11. Alekseev, S. A.; Korytko, D. M.; Lysenko, V. Carbon-containing nanoparticles by SiC electrochemical dissolution. International Research and Practice Conference “Nanotechnology and Nanomaterials” (NANO-2013), August 25 – September 1, 2013, Bukovel, Ukraine. P. 200. 12. Oliinyk, B. V.; Alekseev, S. A. Silicon nanoparticles with grafted polymer: materials with potential sensor applications. International Research and Practice Conference “Nanotechnology and Nanomaterials” (NANO-2013), August 25 – September 1, 2013, Bukovel, Ukraine. P. 279. 13. Korytko, D.; Gryn, S.; Alekseev, S.; Zaitsev, V.; Khaynakov, S.; Iablokov, V.; Kruse, N. Porous texture and crystallinity control of porous SiC. 3rd International Research and Practice Conference “Nanotechnology and Nanomaterials” (NANO-2015), 26–29 August 2015, Lviv, Ukraine. P. 18. 14. Shamatulskaya, E.; Volvach, N.; Korytko, D.; Gryn, S.; Alekseev, S.; Bezverkhyy, I.; Lysenko, V. Unusual chemical properties of nanostructured SiC. 3rd International Research and Practice Conference “Nanotechnology and Nanomaterials” (NANO-2015), 26–29 August 2015, Lviv, Ukraine. P. 388. 15. Shmigol, I. V.; Galagan, N. P; Alekseev, S. A.; Pokrovsky, V. A. Investigation of N-acetylneuraminic acid by laser desorption/ionization on porous silicon. International Symposium “Modern Problems of Surface Chemistry and Physics”, 18–21 May 2010, Kyiv, Ukraine. P. 482-483. 16. Gryn, S. V.; Korytko, D. M.; Iablokov, V.; Kruse, N.; Alekseev, S. A. The textural properties and the crystallinity of porous SiC. International Conference “Modern Problems of Surface Chemistry”, 20–21 May 2014, Kyiv, Ukraine, P. 108. 17. Korytko, D.; Volvach, N.; Gryn, S.; Alekseev, S. Nanosized non-porous silicon carbide surface chemistry. Ukrainian conference with international participation “Chemistry, physics and technology of surface” devoted to the 30th anniversary of the founding of Chuiko Institute of Surface Chemistry of NAS of Ukraine, 17–18 May 2016, Kyiv, Ukraine. P. 117. 18. Korytko, D.; Alekseev, S. Nanoscale anodization products of silicon carbide. Матеріали Всеукраїнської конференції з міжнародною участю «Хімія, фізика і технологія поверхні» – Київ, 2018. – 190 с. Київ, Україна, Трав. 23–24, 2018, с. 88. 19. Alekseev, S.; Korytko, D.; Oliinyk, B.; Lysenko, V. Electrochemical synthesis of carbon fluorooxide nanoparticles from silicon carbide. 18th European symposium on Fluorine chemistry, 7–12 August 2016, Kyiv, Ukraine. P. 113-114. 20. Alekseev, S. A.; Gryn, S. V.; Iablokov, V.; Huczko, A. Silicon carbide catalytic supports for Fischer–Tropsch process. 5th International Conference “Nanotechnologies”, 19–22 November 2018, Tbilisi, Georgia. P. 11. 21. Gryn, S. V.; Korytko, D. M.; Alekseev, S. A. Silicon carbide based materials with tunable properties. 5th International Conference “Nanotechnologies”, 19–22 November 2018, Tbilisi, Georgia. P. 72. 22. Alekseev, S. A.; Gryn, S. V.; Korytko, D. M.; Milovanov, Y. S.; Gavrilchenko, I. V.; Lysenko, V.; Skryshevsky, V. A. Carbon-based nanoparticles and porous silicon carbide by electrochemical dissolution of bulk SiC wafers, 30th International Conference on Diamond and Carbon Materials, 8–12 September 2019, Sevilia, Spain.

Files

Similar theses