Petik T. Improvement of automated process control systems by searching for the boundaries of using mathematical models accounting the internal disturbances of nuclear power plants

Українська версія

Thesis for the degree of Doctor of Philosophy (PhD)

State registration number

0824U003083

Applicant for

Specialization

  • 151 - Автоматизація та комп’ютерно-інтегровані технології

27-08-2024

Specialized Academic Board

5756

Odesa Polytechnic National University

Essay

The dissertation is devoted to developing safe operation conditions and ensuring energy production controllability and stability in nuclear power units (NPU) during transient processes in the reactor by improving mathematical models and methods for optimizing automated control systems of NPU with VVER-1000, using boundaries of representation of internal disturbances of the core. The first section, “Modeling of automated process control systems for energy facilities: Energy Challenges and Trends”, analyzes the state of nuclear energy globally, examines NPP control system problems, automation trends, safe operation technologies, risks of emergencies, and options for autonomous NPP control, particularly neural networks and deep learning, algorithms and IT for parametric optimization, and models and methods for automated NPU control. The second section, “Mathematical modeling of NPU with a pressurized water reactor as a control object”, presents the development of a three-dimensional mathematical model of the core. This model enables automated control in real time, considering homogeneous and heterogeneous neutron absorber characteristics, which helps maintain electrical power and axial offset. The NPU mathematical model includes models of the reactor, steam generator, turbogenerator, and other systems. The reactor model is considered as a distributed multi-zone model, where the control actions are boric acid concentration and control rods position. The kinetics mathematical model considers the fission reactions of 235U and 239Pu nuclei, providing an accurate reproduction of reactor dynamics. The energy release model considers nuclear fission energy, and the heat transfer model details thermal processes. Reactivity effects models consider the control group influence, boric acid concentration, power, and temperature changes, allowing reactivity disturbances to be analyzed and controlled. The steam generator model describes heat, steam formation, and relationships between parameters such as feedwater volume, steam mass and volume, temperature, thermal effects, steam pressure, and flow rate. The turbogenerator model covers unit dynamics, considering changes in generator power, steam pressure, and turbine rotor speed. The coolant lag model considers coolant movement speed and its impact on thermal processes. The presented models are essential tools for research and NPU control system improvement. The third section, “Simulation modeling of NPU control with VVER-1000 under internal and external disturbances”, presents a simplified reactor core model, divided into zones by altitude layers, sectors by 60° symmetry segments, and fuel assembly sections within the sector by operation term. A complex simulation model of NPU as a control object includes models of the reactor, steam generator, turbogenerator, and coolant lag in pipelines. Static programs for NPU power control were considered, systematized, and analyzed, with results presented in tables, aiding in choosing a control strategy. The automated control method of planned NPU power changes, which has been further developed, consists of three control loops: one maintains reactor power change through the equilibrium model of boric acid concentration in the coolant, the second maintains axial offset by adjusting control rods, and the third controls coolant temperature by adjusting turbogenerator valves. In the fourth section, “Improved automatic power control system of NPU with VVER-1000”, the research goal was achieved. Different approaches to reactor control in maneuvering mode are considered, indicating the effectiveness of axial offset control, xenon transient reduction, and water exchange minimization. An automated control system structural diagram for cyclic loading has been developed, considering the physical-mathematical and approximation models of the object for three static control programs. This made it possible to identify effective control strategies, ensuring core stability and an optimal control system structure. The improved computer system for NPU automation ensures stable and controlled energy release by reactor core volume, minimizing external and internal disturbances. The boundaries of using physical-mathematical and approximation models for simulation modeling of the automated control system for changing power were identified. Increasing permissible deviation from calculated reactivity values contributes to the entry of reactivity values obtained with the approximation model into the deviation corridor, which is the object of studying boundaries of using core internal disturbances to ensure balance between accuracy of the simulated values and time of process modeling. These results can be used in future research and development to enhance NPU efficiency and reliability.

Research papers

Петік, Т. В. & Лисюк, Г. П. “АВТОМАТИЧНА СИСТЕМА РЕГУЛЮВАННЯ РІВНЯ ВОДИ В ПАРОГЕНЕРАТОРІ ЕНЕРГОБЛОКУ 1000МВТ АТОМНОЇ ЕЛЕКТРИЧНОЇ СТАНЦІЇ”. Вчені записки ТНУ імені В.І. Вернадського. Серія: технічні науки. 2019; 30 (69) Ч. 2 № 3: 7–13. DOI: https://doi.org/10.32838/2663-5941/2019.3-2/02.

Петік, Т. В. & Давидов, В. О. “РОЗРОБКА МОДЕЛІ ПРОЦЕСУ ЗМІНИ РІВНЯ ВОДИ В ПАРОГЕНЕРАТОРІ ЕНЕРГОБЛОКУ 1000 МВТ АТОМНОЇ ЕЛЕКТРИЧНОЇ СТАНЦІЇ”. Вчені записки ТНУ імені В.І. Вернадського. Серія: технічні науки. 2020; 31 (70) Ч. 2 № 1: 40–45. DOI: https://doi.org/10.32838/2663-5941/2020.1-2/08.

Petik, T., Vataman, V. & Beglov, K. “Simulation of pressurized water reactor to find the best control solution”. Energy Engineering and Control Systems. 2021; 7 (2): 126–135. DOI: https://doi.org/10.23939/jeecs2021.02.126.

Vataman, V., Petik, T. & Beglov, K. “Mathematical model and method for automated power control of a nuclear power plant”. Èlektronnoe Modelirovanie. 2022; 44 (4): 28–40. DOI: https://doi.org/10.15407/emodel.44.04.028.

Beglov, K. V., Odrekhovska, Y. O., Petik, T. V. & Vataman, V. V. “A method for searching the best static program for nuclear power unit control in the event of perturbations of different nature”. Herald of Advanced Information Technology. 2023; 6 (2): 139–151. DOI: https://doi.org/10.15276/hait.06.2023.9.

Beglov, K. V., Petik, T. V. & Vataman, V. V. “Analysis of models of an automatic power control system for a pressurized water reactor in dynamic mode with a change in the static control program”. Odes’kyi Politechnichnyi Universytet. Pratsi. 2023; 1 (67): 60–72. DOI: https://doi.org/10.15276/opu.1.67.2023.08.

Петік, Т. В., Лобачев, М. В., Яворський, О. В. & Голев, В. А. «Автоматична система керування зміни потужності ядерної енергетичної установки». Електротехнічні та комп’ютерні системи. 2023; 38 (114): 40–45. DOI: https://doi.org/10.15276/eltecs.38.114.2023.5.

Петік, Т. В. & Лобачев, М. В. “ПОШУК МЕЖ ПРЕДСТАВЛЕННЯ ВНУТРІШНІХ ЗБУРЕНЬ АКТИВНОЇ ЗОНИ ВВЕР-1000 У ВИГЛЯДІ ФІЗИКО-МАТЕМАТИЧНОЇ ТА АПРОКСИМАЦІЙНОЇ МОДЕЛЕЙ”. Електротехнічні та комп'ютерні системи. 2024; 39 (115): 55–64. DOI: https://doi.org/10.15276/eltecs.39.115.2024.6.

Files

Similar theses