Osokin V. Disturbance–invariant optimal control system for the optical axis of the camera

Українська версія

Thesis for the degree of Doctor of Philosophy (PhD)

State registration number

0825U000981

Applicant for

Specialization

  • 173 - Авіоніка

Specialized Academic Board

PhD 8143

National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Essay

The dissertation is devoted to the development of a disturbance-invariant optical axis control system for aviation and space applications, which allows stabilizing and controlling images from optical instruments with high accuracy in conditions of uncertain external disturbances. The research topic is related to the development of control systems that are invariant to disturbances and provide stable control of the optical axis of the camera in conditions of uncertain and variable external influences. Stabilization and control systems that are able to operate with high accuracy in conditions of uncertainty are of particular importance for modern aviation and space technology. One of the most important tasks is to ensure the stability and accuracy of automatic control systems that control the optical axis of cameras of thermal imaging devices used on aircraft for various purposes. In this case, special attention is paid to the ability of systems to adapt in conditions of uncertain external disturbances, which can significantly affect the formation of an image for correct recognition and guidance. To solve these problems, it is necessary to use the latest methods of mathematical modeling, develop control algorithms and computing tools that allow obtaining a stable, high-precision control system. The research focuses on the creation of automatic control systems based on the principles of an inverse dynamic system. This provides an opportunity to increase accuracy and stability in conditions of external disturbances due to compensation of uncontrolled influences in real time. A special role in this is played by mathematical models that describe the dynamics of optical system control systems and allow predicting their behavior in various operating conditions. The purpose of the dissertation is to increase the accuracy of automatic control systems of the optical axis of cameras by developing and implementing a disturbance-invariant control system using an adaptive coefficient based on an inverse dynamic system, which allows achieving guaranteed accuracy in conditions of unpredictable external influences. The first section provides a comprehensive analysis of existing control methods and algorithms used to stabilize and control the optical axes of cameras. The main modern approaches are considered, in particular the inverse dynamic model, adaptive control, robust control and the method of active disturbance compensation, which allow to ensure high accuracy of the ACS operation. Based on this analysis, requirements for the development of a new control system that will meet modern challenges in the aviation industry are formulated. The second section is devoted to the development of a mathematical model of the ACS for controlling and stabilizing the optical axis of the camera, which provides guaranteed accuracy and stability of transient processes under variable external conditions. The model takes into account the dynamics of the stabilization system and control of the optical system and provides high accuracy of image stabilization. The third section contains the development of an automatic control algorithm that ensures invariance to disturbances. A new algorithm for forming feedback coefficients based on the parameters of the optimal system using the inverse dynamic system and an additional contour is proposed, which is based on the approximation of the state variable to the permissible limit and allows to achieve guaranteed stabilization accuracy under unpredictable deviations. A method for determining the parameters of an additional control loop is presented to ensure the stability and adaptability of the system, which allows the system to adapt to changing conditions in real time. The fourth section is devoted to mathematical modeling of the operation of the developed control system of guaranteed accuracy. It is shown that the proposed algorithm provides high efficiency under conditions of uncertain disturbances. A comparison with traditional methods is made, which demonstrates a significant improvement in the quality of the transient process and stabilization. The practical significance of the work lies in the possibility of using the developed system in aviation and space systems to increase the efficiency of thermal imaging cameras and sensors. This is achieved by ensuring guaranteed accuracy in the operation of the control system under conditions of uncertain disturbances, reducing the stabilization error and improving the quality of image formation and processing. The developed algorithms increase the accuracy of target designation, reduce the influence of external factors, such as vibrations and dry friction, and provide adaptive.

Research papers

Нестеренко О.І., Рижков Л.М., Осокін В.С. Математичні моделі гіростабілізатора за різних режимів його роботи // Механіка гіроскопічних систем,2020, № 40 с. 5-11

O. V. Zbrutskyi, V. Osokin, Zheng Min Mathematical model of the automatic control system in the problem of guaranteed accuracy Механіка гіроскопічних систем, №42 p. 32-38

O. V. Zbrutsky, V. Osokin Stabilization and control system with guaranteed accuracy for optical axis, Механіка гіроскопічних систем, 2022, №43 p.5-11

О. Збруцький, В. Осокін Інваріантна до характеру збурень система керування оптичною віссю // Механіка гіроскопічних систем № 45 c.27-35

О. Збруцький, В. Осокін Оптимізація інваріантної до збурень системи автоматичного керування // Механіка гіроскопічних систем, 2024, № 48 c.28-35

Збруцький, О. В. Математична формалізація задачі синтезу системи автоматичного керування гарантованої точності при невизначених збуреннях / Збруцький О. В., Осокін В. С. // Гіротехнології, навігація і керування рухомими об'єктами – 2022 : матеріали науково–практичної конференції студентів та молодих вчених (15 червня 2022 року) / КПІ ім. Ігоря Сікорського, ІАТ, СКЛА. – Київ, 2022. – С. 17.

Збруцький, О. В. Система віброзахисту для подавлення похибки визначення швидкості лінії візування / Збруцький О. В., Осокін В. С. // Гіротехнології, навігація і керування рухомими об'єктами – 2022(2) : матеріали науково–практичної конференції студентів та молодих вчених (9 грудня 2022 року) / КПІ ім. Ігоря Сікорського, ІАТ, СКЛА. – Київ, 2022. – С. 13–14.

Збруцький, О. В. Інваріантна до характеру збурень система керування оптичною віссю / Збруцький О. В., Осокін В. С. // Гіротехнології, навігація і керування рухомими об'єктами – IV : матеріали науково–технічної конференції студентів та молодих вчених (4–5 січня 2024 р.). – Київ, 2024. – С. 3–6.

O. Zbrutsky, I. Zagirska, V. Osokin. Disturbance–Invariant Automatic Control Systems of Unmanned Aerial Vehicles//2024 IEEE 7th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD). Proceeding. October 22–24, 2024, Kyiv, Ukraine. Pp. 120–123.

Загірська І.О., Збруцький О.В., Міщук А.С., Осокін В.С. Математична задача керування гарантованої точності при невизначених збуреннях// 27 міжнародна конференція «Автоматика 2024».– Жовтень 2024. –Дніпро.

Files

Similar theses