Бойко О. О. Еволюційні нейро-фаззі системи в задачах інтелектуального аналізу даних

English version

Дисертація на здобуття ступеня кандидата наук

Державний реєстраційний номер

0417U001467

Здобувач

Спеціальність

  • 05.13.23 - Системи та засоби штучного інтелекту

01-03-2017

Спеціалізована вчена рада

Д 64.052.01

Харківський національний університет радіоелектроніки

Анотація

Метою дослідження є розробка еволюційних нейро-фаззі систем і методів їх навчання, які дозволяють в online режимі налаштовувати не лише синаптичні ваги і параметри функцій належності, але й архітектуру системи в цілому. Виконано огляд і аналіз відомих архітектур нейро-фаззі систем та методів їх навчання. Запропоновано метод гібридного навчання еволюційної багатошарової нейро-фаззі системи, що ґрунтується на системі Ванга-Менделя і який поєднує в собі процеси еволюції архітектури, самонавчання функцій належності і навчання синаптичних ваг, що дозволяє обробляти дані, що надходять послідовно в online режимі. Розроблено методи навчання для налаштування всіх параметрів нейро-фаззі вузлів для покращення апроксимуючих властивостей еволюційних нейро-фаззі систем. Запропоновано методи навчання еволюційних систем на основі МГУА і каскадних систем з використанням в якості вузлів двовходових нейро-фаззі систем Ванга-Менделя і двовходових нео-фаззі вузлів, що дозволяє обробляти дані в умовах коротких навчальних вибірок. Розроблено архітектуру і методи навчання зваженої ANARX-моделі для прогнозування нестаціонарних нелінійних часових рядів. Удосконалено еволюційну нейро-фаззі мережу Кохонена і метод її налаштування для кластеризації даних, що надходять на обробку в послідовному online режимі, в умовах невизначеності щодо кількості кластерів.

Файли

Схожі дисертації