Мартовицький В. О. Моделі та метод виявлення аномалій функціонування комп'ютерних систем на основі технології машинного навчання

English version

Дисертація на здобуття ступеня кандидата наук

Державний реєстраційний номер

0419U004388

Здобувач

Спеціальність

  • 05.13.05 - Комп'ютерні системи та компоненти

10-10-2019

Спеціалізована вчена рада

Д 64.050.14

Національний технічний університет "Харківський політехнічний інститут"

Анотація

Дисертаційна робота присвячена розробленню моделей та методів виявлення аномалій функціонування комп'ютерних систем на основі технології машинного навчання. Науковими результатами є: 1) вперше запропоновано модель класифікації стану системи, яка ґрунтується на структурному представлені показників функціональності розподілених комп’ютерних систем, що дозволяє виділити множину станів у залежності від функціональних завдань, розмежувати процеси цільового функціонування системи та інтерфейсні процеси взаємодії з мережною інфраструктурою та використовувати їх в методах інтелектуального аналізу для виявлення аномалій функціонування розподілених комп’ютерних систем. 2) удосконалено метод класифікації стану мережі на основі статистичних параметрів за рахунок рівномірної вибірки об'єктів із поверненням для формування навчальних вибірок, що дозволяє адаптувати процес навчання ансамбля класифікаторів до розмірів навчальної вибірки. 3) отримала подальшого розвитку мультиагентна модель системи збору і зберігання інформації, що побудована на основі агентів, метою яких є надання користувачеві або інформаційній системі більш високого рівня інформації про стан мережної інфраструктури, отриманої в результаті збору та інтелектуальної обробки параметрів, що дозволило зменшити навантаження на мережу за рахунок застосування запропонованого протоколу обміну інформацією між агентами. Запропоновані методи та засоби дозволяють підвищити достовірність виявлення аномалій функціонування розподілених комп’ютерних систем в умовах кібернетичних впливів зовнішнього та внутрішнього середовища шляхом побудови моделей і методів вирішення даного завдання на основі технологій інтелектуального аналізу даних.

Файли

Схожі дисертації