Зимовець В. І. Моделі та методи інформаційної технології функціонального діагностування багатоканатної шахтної підйомної машини

English version

Дисертація на здобуття ступеня кандидата наук

Державний реєстраційний номер

0421U101075

Здобувач

Спеціальність

  • 05.13.06 - Інформаційні технології

21-04-2021

Спеціалізована вчена рада

Д 64.050.07

Національний технічний університет "Харківський політехнічний інститут"

Анотація

Дисертаційна робота присвячена підвищенню функціональної ефективності системи функціонального діагностування багатоканатної шахтної підйомної машини шляхом створення інформаційної технології машинного навчання. У роботі поставлене та вирішене актуальне науково-прикладне завдання розроблення інформаційної інтелектуальної технології інформаційного синтезу здатної навчатися системи функціонального діагностування багатоканатної шахтної підйомної машини за умови неповної визначеності даних в рамках інформаційно-екстремальної інтелектуальної технології аналізу даних. Як критерій оптимізації параметрів машинного навчання запропоновано модифіковану міру Кульбака у вигляді функціоналу від точнісних характеристик класифікаційних рішень. На основі запропонованих та розроблених категорійних моделей, методів та алгоритмів створено комплекс інструментальних засобів для інформаційного синтезу системи функціонального діагностування багатоканатної шахтної підйомної машини, який включає модулі формування вхідного математичного опису системи, бази даних і знань, алгоритми інформаційно-екстремального машинного навчання і побудовані за результатам машинного навчання вирішальні правила, які дозволяють при функціонуванні системи в робочому режимі приймати високодостовірні оперативні діагностичні рішення.

Файли

Схожі дисертації