Булах В. А. Інформаційна технологія класифікації впорядкованих масивів даних із фрактальними властивостями методами машинного навчання

English version

Дисертація на здобуття ступеня кандидата наук

Державний реєстраційний номер

0421U101511

Здобувач

Спеціальність

  • 05.13.06 - Інформаційні технології

29-04-2021

Спеціалізована вчена рада

Д 64.050.07

Національний технічний університет "Харківський політехнічний інститут"

Анотація

Дисертацію присвячено розробці інформаційної технології класифікації упорядкованих масивів даних (УМД), які мають фрактальні властивості, з використанням методів машинного навчання. В роботі програмно реалізовано методи генерації УМД з мультифрактальними властивостями різних типів. Здійснено чисельні експерименти, при виконанні яких проводилася класифікація різних типів упорядкованих даних, множина УМД розбивалась на класи за їхніми фрактальними властивостями. Як класифікатори застосовано ансамблеві методи дерев рішень та нейронні мережі, у якості ознак при класифікації використовувалися статистичні, фрактальні та рекурентні характеристики УМД. Дослідження показали, що діапазон мультифрактальних і самоподібних властивостей масивів даних відіграє важливе значення для вибору класифікатора і набору ознак, та, відповідно, точності класифікації. Якщо впорядковані дані характеризуються сильно вираженими мультифрактальними характеристиками, в більшості випадків достатньо використовувати значення УМД як ознаки при класифікації з використанням ансамблевих методів дерев рішень; також вони ефективно класифікуються за фрактальними характеристиками. Якщо УМД має монофрактальні властивості, то такі дані доцільно класифікувати з використанням рекурентних та фрактальних характеристик за допомогою нейронних мереж. Найбільш складним випадком є класифікація УМД, які мають слабо виражену мультифрактальність та слабку автокореляційну залежність. У цьому випадку пропонується застосувати ансамбль з використанням як окремих класифікаторів нейронних мереж та випадкового лісу, де в якості ознак використовуються фрактальні та рекурентні характеристики УМД. Розроблена технологія дозволяє використовувати її для обчислення показника Херста за часовими рядами та дозволяє зменшити довірчий інтервал оцінки показника Херста в декілька разів. Запропонована інформаційна технологія аналізує вхідний потік інформації та обирає набір характеристик класифікатора для максимізації точності класифікації УМД. Таким чином, інформаційна технологія дозволяє класифікувати дані з різними фрактальними властивостями, що дозволяє використовувати її для класифікації упорядкованих масивів даних різноманітної природи, наприклад, для виявлення DDoS-атак в інфокомунікаційних даних, уточнення діагнозу за записами електроенцефалограми та електрокардіографії, класифікації сейсмічних подій за сейсмограмами тощо.

Файли

Схожі дисертації