Об'єкт дослідження – процес керування у розподілених системах транспортної логістики в умовах невизначеності. Предмет дослідження – моделі та методи керування транспортними потоками в умовах невизначеності. Мета роботи - підвищення ефективності управління в розподіленій системі транспортної логістики в умовах невизначеності. Поставлена мета досягається вирішенням наступних завдань: - розробка методу побудови ефективних маршрутів з урахуванням сукупності критеріїв; - розробка точного методу формування плану транспортувань у системі «постачальники - споживачі» за критерієм – ймовірність неперевищення випадковим значенням сумарної вартості транспортування допустимого порога; - розробка методу побудови компромісного маршруту з використанням поступок по відношенню до оптимального плану за основним критерієм; - розробка методу розрахунку пропускних здібностей проміжних пунктів у розгалуженій транспортній мережі в умовах невизначеності; - розробка методу оптимізації структури розподіленої транспортної мережі при розрахунку відстаней у метриці «міських кварталів»; - розробка точного методу вирішення задачі дробово-квадратичного програмування.;
- розробка швидкого наближеного методу розв'язання нелінійних оптимізаційних задач за умов невизначеності; Методи дослідження. Теорія ймовірностей та нечітка математика при розробці моделей систем транспортної логістики, що описують процеси їх функціонування в умовах невизначеності. Методи вирішення оптимізаційних завдань у теоретико-імовірнісній та нечіткій постановках. Метод континуального лінійного програмування для завдань, вихідні дані яких задані своїми модальними значеннями. У дисертаційній роботі з використанням сучасних математичних моделей та методів теорії ймовірностей, випадкових процесів, теорії нечітких множин, інструментарію методів оптимізації та континуального лінійного програмування поставлено та вирішено важливе науково-прикладне завдання управління у розподіленій транспортній системі в умовах нечітких вихідних даних. Практичне значення отриманих результатів полягає у розробці комплексу моделей та методів управління у розподілених системах транспортної логістики в умовах невизначеності щодо значень вихідних даних. Розроблені моделі та методи в сукупності вирішують важливе науково-прикладне завдання управління складними системами та створюють теоретичний фундамент для вирішення практичних завдань. Розроблені методи формування оптимальних маршрутів у системі «постачальникидоставка-споживачі» забезпечують можливість суттєвого підвищення ефективності перевезень під час вирішення реальних завдань транспортної логістики.
Завдання управління у розподілених транспортних системах є важливим елементом з великого комплексу завдань, які вирішуються методами загальної теорії логістики. Відповідна транспортна задача поєднує сукупність задач з однотипною математичною моделлю, які вирішуються методами лінійного програмування. У канонічній постановці задача полягає у пошуку плану перевезень деякого однорідного продукту від безлічі постачальників до безлічі споживачів, оптимального з погляду деякого обраного критерію. Для вирішення задачі, традиційно, використовуються наступні два підходи.
Перший - передбачається, що її параметри задані своїми детермінованими значеннями. Другий – випадкові параметри задачі заміняються їхніми середніми значеннями. Зрозуміло, що адекватність відповідних моделей не є задовільною. У даній роботі розробляються методи вирішення задач управління транспортуваннями з урахуванням реальної невизначеності вихідних даних. Розробкою методів вирішення транспортних завдань та різних їх модифікацій займалися велика кількість зарубіжних та вітчизняних вчених: Дж.Гасс, Т.С.Motzkin, K.B.Halley, A.A.Corban, M.Cerсhes, B.G.Dantzig, C.Mihu, M.Vlach, J.Moravec, G.Smith, Д.Б. Юдин, Е.Г.Гольштейн, Б.С. Верховский, В.А. Емельянов, В.В. Иванов, Ю.М. Неруш, М.П. Гордон,В.А. Стаханов, В.С. Лукинскийи та інші. У роботах цих авторів вичерпним чином розглядаються лінійні моделі та методи вирішення класичних двоіндексних транспортних завдань у детермінованій постановці. Однак, при цьому дуже поверхово зачіпається проблема можливої високої розмірності таких завдань, а також особливості та труднощі їх вирішення у випадках невизначеності вихідних даних. Необхідність та важливість розгляду та вирішення цих проблем безперервно зростає. У зв'язку з цим тема дисертаційної роботи, присвяченої моделям та методам вирішення завдань транспортної логістики в умовах реальної невизначеності вихідних даних, є актуальною.