Nykolyshyn T. Limit equilibrium of orthotropic cylindrical shells with cracks providing for elasto-plastic strains

Українська версія

Thesis for the degree of Candidate of Sciences (CSc)

State registration number

0401U000255

Applicant for

Specialization

  • 01.02.04 - Механіка деформівного твердого тіла

25-12-2000

Specialized Academic Board

Д 35.195.01

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine

Essay

The thesis is devoted to elaboration of the procedure to reduce the elasto- plastic problemas on the stressed-strained and limit equilibrium of orthotropic cylindrical shells with through and surface cracks to the systems of non-linear singular integral equations. The procedure is based on the equations of the theory of Timoshenko type shells, analogue of Leonov- Panasyuk-Dugdale model and distortion method in the theory of shells with cracks. For a series of new problems the systems of singular intrgral equations are obtained. These equations have unknown limits of integration and discontinuous right-hand parts, which contain unknown forces and moments satisfying the plasticity conditions for thin shells. An algorithm for numerical solution of the equations obtained is constructed. The analysis is carried out of the effect of loading, orthotropy parameters, the cracks interaction, elastic medium, the residual stresses distribution onthe limit equilibrium of orthotropic cylindrical shells with through and surface cracks.

Files

image001.tif

image002.tif

image003.tif

image004.tif

image005.tif

image006.tif

image007.tif

image008.tif

image009.tif

image010.tif

image011.tif

image012.tif

image013.tif

image014.tif

image015.tif

image016.tif

image017.tif

image018.tif

image019.tif

image020.tif

image021.tif

image022.tif

image023.tif

image024.tif

image025.tif

image026.tif

image027.tif

image028.tif

image029.tif

image030.tif

image031.tif

image032.tif

image033.tif

image034.tif

image035.tif

image036.tif

image037.tif

image038.tif

image039.tif

image040.tif

image041.tif

image042.tif

image043.tif

image044.tif

image045.tif

image046.tif

image047.tif

image048.tif

image049.tif

image050.tif

image051.tif

image052.tif

image053.tif

image054.tif

image055.tif

image056.tif

image057.tif

image058.tif

image059.tif

image060.tif

image061.tif

image062.tif

image063.tif

image064.tif

image065.tif

image066.tif

image067.tif

image068.tif

image069.tif

image070.tif

image071.tif

image072.tif

image073.tif

image074.tif

image075.tif

image076.tif

image077.tif

image078.tif

image079.tif

image080.tif

image081.tif

image082.tif

image083.tif

image084.tif

image085.tif

image086.tif

image087.tif

image088.tif

image089.tif

image090.tif

image091.tif

image092.tif

image093.tif

image094.tif

image095.tif

image096.tif

image097.tif

image098.tif

image099.tif

image100.tif

image101.tif

image102.tif

image103.tif

image104.tif

image105.tif

image106.tif

image107.tif

image108.tif

image109.tif

image110.tif

image111.tif

image112.tif

image113.tif

image114.tif

image115.tif

image116.tif

image117.tif

image118.tif

image119.tif

image120.tif

image121.tif

image122.tif

image123.tif

image124.tif

image125.tif

image126.tif

image127.tif

image128.tif

image129.tif

image130.tif

image131.tif

Similar theses