Moroz M. Functions with fractal properties related to representations of numbers by Engel and Ostrogradsky–Sierpinski–Pierce series

Українська версія

Thesis for the degree of Doctor of Philosophy (PhD)

State registration number

0824U000261

Applicant for

Specialization

  • 111 - Математика

11-01-2024

Specialized Academic Board

3434

Institute of Mathematics of the National Academy of Sciences of Ukraine

Essay

The thesis belongs to the field of constructive theory of real functions with locally complicated structure and fractal properties, theory of encoding of real numbers using an infinite alphabet, metric and probability theory of numbers, and partly appertains to the theory of dynamical systems. It is devoted to special functions defined in terms of representation of real numbers by Engel and Ostrogradsky–Sierpi´nski–Pierce series, as well as Perron series, which is a generalization of Engel, L¨uroth, and Sylvester series. An important component of the thesis is a comprehensive theory of encoding of real numbers using an infinite alphabet, which is based on the representation of numbers by Perron series. The metric theory of dynamical systems in the thesis is represented by the solution of an analogue of the Gauss–Kuzmin problem (which concerned elementary continued fractions) for difference representations of numbers by Engel and Perron series. This work is a continuation of research into various coding systems of real numbers using an infinite alphabet and objects related to them, which were carried out by 1) Gauss C.F., Kuzmin R.O., Khinchin A.Ya. (elementary continued fraction); 2) Pratsiovytyi M.V., Leshchynskyi O.L., Torbin G.M., Nikiforov R.O. 8 (?∞-representation); 3) Erd˝os P., R´enyi A., Galambos J., Knopfmacher A., Knopfmacher J., Pratsiovytyi M.V., Hetman B.I., Baranovskyi O.M. (Engel series); 4) Ostrogradsky M.V., Sierpi´nski W., Pierce T.A., Shallit J.O., Pratsiovytyi M.V., Baranovskyi O.M., Torbin G.M. (Ostrogradsky–Sierpinski–Pierce series); 5) L¨uroth J., Zhykharyeva Yu.I., Khvorostina Yu.V. (positive and alternating L¨uroth series); 6) Sylvester J.J., Erd˝os P., R´enyi A. (Sylvester series); 7) Perron O. (Perron series). Traditional for systems of coding (representation) of numbers are questions about 1) the existence and unity of the representation; 2) the topological and metric properties of cylindrical set; 3) the asymptotic frequencies of digits; 4) the normal properties of representation; 5) the topological and metric structure of set with conditions for the use of numbers in representation; 6) the properties of the dynamic system generated by the left-shift operator of digits. The main objects of the research are projectors of one representation into another representation, random variables associated with Ostrogradsky– Sierpi´nski–Pierce and Engel series, transformation of space of representations, dynamical systems generated by left-shift operators of digits.

Research papers

Мороз, М. (2017). Проектор Δ^O-зображення чисел в Δ^E-зображення. Збірник Праць Інституту математики НАН України, 14(4), 49–64. DOI: http://trim.imath.kiev.ua/index.php/trim/article/view/404

Мороз, М. П. (2019). Числові характеристики випадкової величини, пов’язаної з представленням дійсних чисел рядами Остроградського-Серпінського-Пірса. Збірник Праць Інституту математики НАН України, 16(3), 160–173. DOI: http://trim.imath.kiev.ua/index.php/trim/article/view/514

Moroz, M.P. Numerical Characteristics of a Random Variable Related to the Engel Expansions of Real Numbers. Ukr Math J 72, 759–770 (2020). DOI: https://doi.org/10.1007/s11253-020-01825-7

Moroz, M.P. Gauss–Kuzmin Problem for the Difference Engel-Series Representation of Real Numbers. Ukr Math J 74, 1149–1154 (2022). DOI: https://doi.org/10.1007/s11253-022-02126-x

Мороз М. П. Зображення дійсних чисел рядами Перрона, їхня геометрія та деякі застосування, Нелінійні коливання, 26, № 2, 247–260 (2023). DOI: https://doi.org/10.37863/nosc.v26i2.1417

Мороз, М. Нормальні властивості чисел у термінах їхнього зображення рядами Перрона. Український математичний журнал, 75(7), 2023, с. 920-932. DOI: https://doi.org/10.37863/umzh.v75i7.7503

Files

Similar theses