Hrytsak A. Radiation and thermally stimulated processes in scintillation and thermochromic materials for ionizing radiation detection.

Українська версія

Thesis for the degree of Doctor of Philosophy (PhD)

State registration number

0824U003329

Applicant for

Specialization

  • 105 - Прикладна фізика та наноматеріали

21-11-2024

Specialized Academic Board

PhD 7014

Ivan Franko National University of Lviv

Essay

The work is dedicated to the targeted search and study of the properties of effective scintillation and thermochromic materials that can be used for ionizing radiation detection, on the basis of investigations of the inherent to them thermally and radiation stimulated processes. Special attention was devoted to study of the scintillation characteristics of maximally pure and defect-free single crystals as sensitive materials for cryogenic detectors to ensure favorable conditions for the realization of intrinsic excitonic luminescence. Therefore, a main part of this dissertation work was devoted to study of the materials such as cesium iodide (CsI), zinc telluride (ZnTe) and calcium tungstate (CaWO4). At the same time, an alternative method of the targeted introduction of an activator impurity was used to optimize the luminescence parameters of zinc tungstate (ZnWO4). Significant attention was also devoted to study of the thermochromic materials, particularly those based on diethylammonium tetrachlorocuprate [NH2(C2H5)2]2CuCl4 (DEACC), which are characterized by the ability to change their optical properties under temperature variations, enabling their use in sensor technology, particularly for ionizing radiation detection. Although the single crystalline scintillators and thermochromic materials are employed for different purposes, they can be considered complementary to one another, opening up new opportunities for enhancing radiation safety systems and ionizing radiation detection technologies. As a result of study of X-ray luminescence spectra and their correlation with the thermally stimulated processes, presence of Vk and H centers responsible for the X-ray luminescence and thermoluminescence bands was confirmed in nominally pure CsI crystals. Additionally, the nature of the ionic conductivity in this material was established. The thermally stimulated luminescence in combination with the analysis of X-ray luminescence spectra and scintillation decay curves in nominally pure calcium tungstate crystals was investigated. CaWO4 crystals with maximal excitonic luminescence intensity were grown using the Czochralski method from the raw materials of the highest purity (99.99%), obtained using solid-phase high-temperature synthesis. These crystals are promising for the development of cryogenic scintillation detectors. The introduction of Li₂O impurities into ZnWO₄ scintillator leads to increase in the luminescence band intensity at 2.59 eV, that implies its potential use in the sensor devices. A patent for a utility model has been obtained concerning the scintillation material based on ZnWO₄ crystal, improved by doping with lithium. This modification allowed increasing of the luminescence light output and a reduction of the light sum accumulation at deep trapping levels during X-ray excitation. Among the studied materials ZnTe and CaWO₄ crystals possess the optimal scintillation characteristics. Undoped ZnTe exhibits a competitive light output value of 117 ± 20% in respect of that of the CaWO₄ scintillator, with a relatively short scintillation decay time. This implies the potential use of zinc telluride as a sensitive element in the traditional scintillation detectors operating at the liquid nitrogen temperature (T = 77 К). This material may be particularly attractive for confirming the possibility of observation of the neutrino-less double beta decay (0νDBD) in the 130Te nuclei, which are the part of the scintillator. The proposed explanation of the observed extremely high sensitivity of the thermochromic properties of the microcomposites based on diethylammonium tetrachlorocuprate (DEACC) crystals to relatively low doses of ionizing radiation involves a significant shift in the thermochromic phase transition temperature determined from the D(T) hysteresis loops, towards lower values. The key factor in the radiation effect is related to changes at the interface between the matrix and the microcrystal. The shift in phase transition temperature under relatively low radiation doses is attributed to the breaking of the chemical bonds between the polymer matrix and the microcrystals. There was developed the technology for producing of the thermochromic indicator based on a DEACC polycrystalline film coated with a polymer, which can be used for fabrication of the sensitive elements for sensors including those used for measurement of the doses of ionizing radiation.

Research papers

1. Mikhailik V.B. ZnTe cryogenic scintillator / V.B. Mikhailik, S. Galkin, H. Kraus, V. Mokina, A. Hrytsak, V. Kapustianyk, M. Panasiuk, M. Rudko, V. Rudyk // Journal of Luminescence. – 2017. – Vol. 188. – P. 600-603.

2. Hrytsak A. X-Ray Luminescence and Thermally Stimulated Processes in Cesium Iodide Crystal / A. Hrytsak, M. Rudko, V. Kapustianyk, L. Hrytsak, V. Mykhaylyk // Phys. Status Solidi B. – 2023. – Vol. 260, No 11. – P. 2300289 (6 p).

3. Грицак А. Термостимульована люмінесценція і природа сцинтиляцій у кристалі CaWO4 / А. Грицак, В. Капустяник, М. Рудко // Журнал фізичних досліджень. – 2024. – Vol. 28. – P. 2001 (6 p).

4. Kapustianyk V. Thermochromic microcomposites with extremely high sensitivity to ionizing radiation / V. Kapustianyk, Y. Chornii, A. Hrytsak // Phase Transitions. – 2024. – Vol. 97. – P. 1-9.

5. Патент на корисну модель №134281 Україна, МПК H05B 33/00, H05B 33/18 (2006.01), G01T 1/00, G01T 1/10 (2006.01), G01T 1/202 (2006.01) Сцинтиляційний матеріал на основі вольфрамату цинку. Новосад С. С., Костик Л. В., Капустяник В. Б., Новосад І. С., Рудко М. С., Грицак А. М.; — №u201812274; заявл. 11.12.2018; опубл. 10.05.2019, Бюл. №9/2019. Власник Львівський національний університет імені Івана Франка.

6. Патент на корисну модель №153944 Україна, МПК G01K 11/16 (2021.01) Термохромний індикатор / Капустяник В. Б.; Чорній Ю. В.; Семак С. І.; Грицак А. М.; — №u202301357; заявл. 30.03.2023; опубл. 21.09.2023, Бюл. № 38/2023. Власник Львівський національний університет імені Івана Франка.

7. Патент на корисну модель №156385 Україна, МПК G01T 1/02 (2006.01), G01T 1/202 (2006.1), G07C 211/04 (2006.01) Спосіб вимірювання експозиційної дози іонізаційного випромінювання / Капустяник В. Б.; Чорній Ю. В.; Грицак А. М.; — №u202303229; заявл. 03.07.2023; опубл. 19.06.2024, Бюл. № 25/2024. Власник Львівський національний університет імені Івана Франка.

8. Hrytsak A.M., Kapustianyk V.B., Panasiuk M.R., Rudko M.S. Thermally stimulated processes in undoped CsI // Book of Abstracts of International Conference for Professionals and Young Scientists “Low Temperature Physics 2018”, ICPYS-LTP 2018, Харків, 4-8 липня 2018, P. 156.

9. Грицак А., Рудко М., Капустяник В. Природа сцинтиляцій і термостимульованої люмінесценції в кристалі вольфрамату кальцію // Тези доп. Міжнар. конф. студ. і мол. науковців з теор. та експер. фізики «ЕВРИКА-2024», Львів, 14-16 травня 2024, C. 92.

10. Hrytsak A., Kapustianyk V., Chornii Y. The thermochromic microcomposite with a high sensitivity to ionizing radiation // Book of Abstracts XXIV of International Young Scientists Conference on Applied Physics «ICAP 2024», Київ, 23-24 травня 2024, P.73-74.

11. Грицак А. М., Капустяник В. Б., Рудко М. С. Сцинтиляційні властивості телуриду цинку за кріогенних температур // Тези доп. Міжнародної науково-практичної конференції “Стратегічні пріоритети розвитку науки, освіти та технологій”, Кременчук, 22 червня 2024, P. 23-28.

Similar theses