Дисертацію присвячено вирішенню важливої науково-технічної задачі вдосконалення систем охолодження газових турбін шляхом подальшого розвитку методів гідравлічного і теплового розрахунку каналів системи охолодження газових турбін. Вивченню структури і властивості потоку в цих елементах, отриманню залежностей, описуючих цей потік.
Виконано аналіз науково-технічної літератури, присвяченій проектуванню систем охолодження ГТД, в якому розглянуто міжнародний досвід експериментальних досліджень і обчислювальних експериментів, що до дослідження теплообміну і гідродинаміки течії в обертових елементах. В результаті аналізу літератури показано що, основним напрямом розвитку ефективних і надійних систем охолодження ГТД є підвищення точності розрахунку витратних і гідравлічних характеристик елементів системи охолодження.
Показано, що на моделювання процесів впливає геометрія каналу, направлення течії (відцентрове, доцентрове), наявність супутних потоків, параметри і властивості (повітря, масло-повітря) охолоджуючого середовища. Тому від точності, з якою буде змодельований окремий елемент, залежить надійність моделювання всієї системи охолодження.
Проведено адаптацію математичних моделей елементів гідравлічних мереж для розрахунку систем охолодження газових турбін, таких як: апарат закручування потоку, теплообмінник, канали, що переміщуються.
Наведено опис, теоретичні основи моделювання цих елементів гідравлічної схеми, проведені чисельні дослідження по впливу апарата закручування і теплообмінника на ефективність охолодження, складені відповідні моделі систем охолодження.
Проведено дослідження впливу відцентрового ефекту на можливість подачі повітря в порожнини ротора турбіни. Розглянуті приклади течії повітря в порожнинах, утворених двома паралельними дисками з осьовою або радіальною подачею повітря на периферійному радіусі.
Проведений CFD аналіз показав, що в залежності від напрямку подачі повітря істотно змінюється характер течії в порожнині. При радіальній подачі повітря в напрямку осі обертання має місце безвихровий характер течії, при осьовій - з'являється вихор. Проте, відмінність в характері течії майже не позначається на величині протитиску, який перешкоджає переміщенню повітря.
Визначено діапазон достовірності результатів методу розрахунку насосного ефекту в придискових порожнинах роторів газових турбін, а саме: відношення ширини порожнини до зовнішнього радіуса диска не перевищує величину 0,17, що дозволяє обґрунтовано використовувати цей метод для розрахунків систем охолодження.
Розроблено узагальнений підхід до методу розрахунку коефіцієнтів витрати і гідравлічного опору елементів систем охолодження газових турбін таких, як отвори, потовщені діафрагми, лабіринтові ущільнення, які регламентують витрату охолоджуючого повітря і відповідають за надійність і економічність системи охолодження.
Розрахунок гідравлічної схеми застосовує коефіцієнти гідравлічного опору кожної ділянки схеми, а експериментальні дані часто представленні коефіцієнтами витрати. Тому встановлено зв'язок між ними за допомогою припущень, які враховують різницю між стисливим і нестисливим середовищами.
На основі проведених досліджень, обґрунтовано поправку на стисливість до коефіцієнту гідравлічного опору подовжених діафрагм, отворів, лабіринтових ущільнень, яка уточнює коефіцієнт гідравлічного опору до 25%.
Розроблено математичну модель розрахунку підшипника, описані підходи до визначення концентрації і термодинамічних характеристик двофазного гомогенного середовища, що дозволило включити підшипник як в гідравлічну, так і теплову моделі систем охолодження газових турбін.
Розроблено метод розрахунку гідравлічної мережі для маслоповітряної суміші, який істотно розширив можливості моделювання процесів охолодження роторів і підшипників газових турбін і маслозабезпечення підшипників, що дозволило провести спільний розрахунок системи охолодження ротора турбіни і підшипників.
Проведено дослідження системи охолодження ротора високотемпературної газової турбіни за допомогою розроблених методів розрахунку. Встановлено, що методи розрахунку відповідають робочим даним газотурбінного двигуна Д 36.
Ключові слова: газова турбіна, система охолодження, гідравлічний опір, витрата повітря, підшипник, система маслозабезпечення.