Петренко Т. А. Методи та моделі експертних систем розпізнавання кібератак на основі кластеризації реалізацій ознак

English version

Дисертація на здобуття ступеня кандидата наук

Державний реєстраційний номер

0419U003661

Здобувач

Спеціальність

  • 05.13.21 - Системи захисту інформації

02-07-2019

Спеціалізована вчена рада

Д 26.062.17

Національний авіаційний університет

Анотація

Дисертаційна робота містить результати досліджень, які спрямовані на подальший розвиток методів та моделей для адаптивних систем розпізнавання кібератак на основі кластеризації реалізацій ознак. Запропоновано структурну схему здатної до самонавчання експертної системи (ЕС) з інформаційної безпеки. Розроблено модель ЕС у складі системи інтелектуального розпізнавання кіберзагроз (СІРКЗ) та метод її навчання, у яких застосовується процедура нечіткої кластеризації реалізацій ознак кібератак та корекції вирішальних правил, що дозволяє створювати адаптивні механізми самонавчання СІРКЗ. Запропоновано застосовувати в якості оціночного показника ефективності навчання ЕС модифіковану інформаційну умову функціональної результативності (ІУФР), яка ґрунтується на ентропійному та інформаційно-дистанційному критерії Кульбака-Лейблера. Удосконалено метод розбиття простору реалізацій ознак на кластери в ході реалізації процедури розпізнавання кібератак, а також метод навчання ЕС, які являють собою ітераційну процедуру пошуку глобального максимуму ІУФР. Проведені тестові дослідження ЕС та порівняльний аналіз із існуючими методами та моделями, які використовуються у інтелектуальних системах розпізнавання кібератак.

Файли

Схожі дисертації