Adamchuk A. Justification effective parameters of open-pit mines using combined transport

Українська версія

Thesis for the degree of Candidate of Sciences (CSc)

State registration number

0421U101765

Applicant for

Specialization

  • 05.15.03 - Відкрита розробка родовищ корисних копалин

29-04-2021

Specialized Academic Board

Д 08.080.02

National Technical University Dnipro Polytechnic

Essay

The thesis solved the current scientific and practical problem of establishing patterns of changes in the cost of transporting rock mass during the deepening of mining operations on the schemes of combined transport depending on their pa-rameters, which allowed to determine the optimal depth of construction of trans-shipment points of combined road-rail and road-conveyor transport with their simultaneous use and in connection with the parameters of deep open-pit mines, due to which it was possible to increase the efficiency of opencast mining in deep open-pit mines by reducing the cost of transportation and mining and capital works. The analysis of the interrelationships of the main parameters of deep open-pit mines with each other and with transport schemes allows us to assert that the effective contours of deep quarries are determined by the parameters of the com-bined in-pit transport schemes and the minimum volume of the near-contour zone of the deposit. Studies of the parameters of deep open-pit mines have established that the optimal location of the contours of the open-pit mine of a certain depth relative to the horizontal capacity of the field should be considered such that the volume of the contour zone of the field will be minimal. The parameter characterizing this position starts from the point of intersection of the line of the mineral contour in the lying side and the surface to the upper edge of the open-pit mine board in the lying side of the ore body (bx). The position of the current contours of the open-pit mine is determined taking into account the established design contours of the parameter b, the distance between the points of intersection of the surface with the lines of the contour of the mineral and the side of the open-pit mine in the ly-ing side. A method has been developed to establish the boundary contours of deep open-pit mines, taking into account the change in the cost of transportation of rock mass during the deepening of mining operations, which takes into account the change in the distance of transportation in calculating the cost of field devel-opment. At opening of deep horizons of iron ore open-pit mines, from the point of view of reduction of consumption by dump trucks of diesel fuel, introduction of the transport scheme with through front of works and through passage of dump trucks at their unloading in the bunker is offered. Thus fuel consumption for one transport cycle will be reduced by 2 liters, thus, at annual productivity of 10 mil-lion tons, economy of diesel fuel will make 150 thousand l. An algorithm for calculating the depth of introduction of transshipment points for rail transport and conveyor transport in deep open-pit mines has been developed, which has reduced the cost of transporting rock mass. The analysis of economic and mathematical models of combined transport in the conditions of Kacharsky open-pit mine showed that in comparison with mo-tor transport costs for transportation of residual total volume of rock mass at use of automobile-conveyor with introduction of the conveyor lift on depth of 270 m decrease by 37,6%, railway (Hr = 150 m) and automobile-conveyor (Hс = 330 m) – by 50.3%, automobile-railway (Hr = 150 m) and automobile-conveyor (Hс = 345 m) – by 50.8%. Based on the developed provisions for the implementation of effective schemes of combined intra-open-pit mine transport, the use of a new design of the transshipment point (Patent of Ukraine № 119491) with the possibility of through trucks in their unloading in the receiving hopper of the conveyor lift, which reduces costs. Dependences of reduction of expenses for mining and capital works for deep open-pit mines of Ukraine and Kazakhstan at construction of a transshipment point of the combined motor-conveyor transport of the offered design on loading capacity of dump trucks which allow to assert about efficiency of application of transshipment dump trucks during their unloading by reducing the volume of mining and capital works. It is recommended that the skip transport installation for completion of con-tour stocks under transport berms of deep open-pit mines is developed as the in-termediate reloader that allows to include in development of additional volume of mineral without need of transfer of transport communications and separation of a board of a open-pit mine and, at the expense of costs of mining and capital works. The use of the developed transshipment devices of combined intra-open-pit mine transport will allow to reduce the costs for the development of the field in deep open-pit mines by at least UAH 7-9 million.

Files

Similar theses