Kondratiuk V. Methods and algorithms of precision position determination of moving objects using signals of global navigation satellite systems

Українська версія

Thesis for the degree of Candidate of Sciences (CSc)

State registration number

0421U102397

Applicant for

Specialization

  • 05.22.13 - Навігація та управління рухом

12-05-2021

Specialized Academic Board

Д 26.062.03

National Aviation University

Essay

The dissertation is devoted to the application of global navigation satellite systems (GNSS) to solve relevant scientific problems: precision position determination of moving objects by processing the carrier phase and code GNSS observations without a complicated procedure of the carrier phase ambiguity resolution. The dissertation solves the scientific and technical problem of developing methods and algorithms for precision position determination of moving objects by processing the carrier-phase and code GNSS observations without a complicated procedure of the carrier-phase ambiguity resolution. The method for processing carrier-phase and code GNSS observations has been improved that solves the task of smoothing/filtering of code observations using continuous carrier-phase observations in the mode of kinematic positioning, which in a contrast to other known methods takes into account the influence of carrier phase contribution (“wind-up”-effect), which is manifested during change of motion direction, evolution and rotations of moving objects. This method ensures accuracy of moving objects coordinates determination increase up to decimeter level. In the process of scientific research, the method of combined differential compatible code and carrier-phase solution of the navigation problem was developed with simultaneous estimation of initial carrier-phase ambiguities (as continuous variables) and without direct smoothing / filtering operations. The method is the most effective for the joint processing of GPS + GLONASS observations as it takes into account the peculiarities of the frequency distribution of the spectrums of the emitted GLONASS signals, which provides a decimeter level of accuracy. For the first time, a method of joint processing the carrier-phase and code GNSS observations was developed, which solves the problem of accurate kinematic positioning, which, unlike known methods, allows eliminating variational components of solution error, significantly reducing the impact of estimates of code-phase solutions due to changes in the working constellation of GNSS satellites, and, on average, 2 times reducing the positioning errors with regard to the "smoothed" solution and 3–4 times with regard to DGPS solutions. A method for estimating the actual accuracy of coordinate determinations using differential correction information has been developed, which allows to make verification of the user’s GNSS equipment for two operating modes: for a fixed receiver – static mode and for a mobile receiver – kinematic mode.

Files

Similar theses