Onufriyenko V. Electromagnetics fields of differinegral distributions of charges and currents on the topology of a fractal medium

Українська версія

Thesis for the degree of Doctor of Science (DSc)

State registration number

0505U000152

Applicant for

Specialization

  • 01.04.03 - Радіофізика

18-02-2005

Specialized Academic Board

Д 08.051.02

Oles Honchar Dnipro National University

Essay

The dissertation is devoted to the theoretical modeling of the radiation of the differintegral electromagnetic-field-source distributions and to that of the interaction of the above distributions with a fractal structured medium. In the work, the foundations for a new conceptual scheme of the fractal electrodynamics have been developed. The scheme is bared on the feasibility of the determination of the Hausdorff metric and measure for fractal point charges with the definition of the differintegral alpha-form of singular distributions on the topology of sets of physical charges (current elements). The connection between the derivative of a fractal Dirac delta-function and the alpha-form of a fractal charge (current element) has been determined. The model of an alpha-fold fractal layer on a surface (as a generalization of the simple and the double layers) has been proposed. Semigroup properties of electrodynamic vector potentials of the layers of electric and magnetic currents have been specified and used to find the alpha-characteristics of the field in the fractal medium. Artificial media with nonuniform impedance inserts in the form of a combination of the related electric and magnetic alpha-fields are considered. The differintegral alpha-form with a variable scaling coefficient in the boundary conditions of the respective boundary-value problems have been brought into use. As a result of the performed investigations and the discovered effects, the new controlling means for processes of the electromagnetic wave excitation and propagation have been determined.

Files

01-Титул-Зміст--Зміст.doc

02-Вступ--Вступ.doc

03-Розділ1--1.1.doc

03-Розділ1--1.2.doc

03-Розділ1--1.3-Висновки.doc

04-Розділ2--2.1--2.1.doc

04-Розділ2--2.1--2.1.doc

04-Розділ2--2.2--2.2.doc

04-Розділ2--2.3--2.3-Висновки.doc

05-Розділ3--3.1--3.1.1.doc

05-Розділ3--3.1--3.1.2.doc

05-Розділ3--3.2--3.2.doc

05-Розділ3--3.3--3.3 -Висновки.doc

06-Розділ4--4.1--4.1.1.doc

06-Розділ4--4.1--4.1.2.doc

06-Розділ4--4.1--4.1.doc

06-Розділ4--4.2--4.2.1.doc

06-Розділ4--4.2--4.2.2.doc

06-Розділ4--4.2--4.2.doc

06-Розділ4--4.3--4.3Висновки.doc

07-Розділ5--5.1--5.1.1.doc

07-Розділ5--5.1--5.1.2.doc

07-Розділ5--5.1--5.1.3.doc

07-Розділ5--5.1--5.1.doc

07-Розділ5--5.2--5.2.1ФракЗСуТеорМодОднСер.doc

07-Розділ5--5.2--5.2.2ОсобМатМодІнтЗС.doc

07-Розділ5--5.2--5.2ІнтРозпЗСуФрСередовищі.doc

07-Розділ5--5.3--5.3-5.3.1.doc

07-Розділ5--5.3--5.3.2.doc

07-Розділ5--5.4--5.4Висновки.doc

08-Розділ6--6.1--6.1.1.doc

08-Розділ6--6.1--6.1.2.doc

08-Розділ6--6.1--6.1.doc

08-Розділ6--6.2--6.2.1.doc

08-Розділ6--6.2--6.2.2.doc

08-Розділ6--6.3--6.3-6.3.1.doc

08-Розділ6--6.3--6.3.2.doc

08-Розділ6--6.4--6.4Висновки.doc

09-Розділ7--7.1--7.1-7.1.1.doc

09-Розділ7--7.1--7.1.2.doc

09-Розділ7--7.2--7.2-7.2.1.doc

09-Розділ7--7.2--7.2.2.doc

09-Розділ7--7.3--7.3.1.doc

09-Розділ7--7.3--7.3.2.doc

09-Розділ7--7.3--7.3.2.doc

09-Розділ7--7.4--7.4Висновки.doc

10-ОснРезВисновки--ОсновніРезультатиВисновки.doc

11-Література--СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ.doc

1aref.doc

2aref.doc

Similar theses