Stepanov D. Technological features of quality and productivity assurance of processing of complex-profile and thin-walled parts with polymer-abrasive tools

Українська версія

Thesis for the degree of Candidate of Sciences (CSc)

State registration number

0419U005002

Applicant for

Specialization

  • 05.02.08 - Технологія машинобудування

28-11-2019

Specialized Academic Board

Д 64.050.12

National Technical University "Kharkiv Polytechnic Institute"

Essay

The thesis is devoted to the solution of the important scientific and technical problem of technological provision of improving the quality of the machined surfaces of complex profile and thin-walled parts, which predominate in aviation-building, medical, instrument-making and other industries, and improving the productivity of the finish stage of the technological process of manufacturing such parts with brush polymer-abrasive tools. For the first time in the thesis, mathematical models of temperature and force influence on the treated surface were experimentally confirmed. It is proposed to combine polymer-abrasive brushes (PAB) of different types both sequentially and simultaneously to achieve the required quality and high performance. A method for determining the softening and melting temperature of fibers is proposed to regulate the temperature limitation of brush tools, which allows them to remain in working condition. The conditions of force interaction in the processing with polymer-abrasive brushes are substantiated. Theoretical and practical principles of the method of machining using the tool of rotational action on the basis of polymer-abrasive fibers are provided and substantiated with systematic analysis and generalization of experience of the finishing and repair of thin-walled and complex-profile details. The rational processing modes and regularities of quality parameters change for processing of parts from different materials with PAB were established on the basis of a complex study of the surface layer characteristics and the impact of technological factors on these characteristics in connection with a specific sequence of using of PAB with different parameters. Technological recommendations were developed to use PAB on various materials (steels, aluminum and alloys based on it, heat-resistant nickel and titanium alloys), for thin-walled and complex-profile parts made of the above mentioned materials and for repair production (removal of soot, thermal-covering, oxide films, etched layer and coatings of thin-walled parts of complex spatial forms and removal of burrs from complex-profile edges).

Files

Similar theses