Gurbych O. Methods and tools for analyzing chemical compounds using artificial intelligence

Українська версія

Thesis for the degree of Doctor of Philosophy (PhD)

State registration number

0825U000543

Applicant for

Specialization

  • 122 - Комп’ютерні науки

10-07-2023

Specialized Academic Board

PhD 1669

Lviv Polytechnic National University

Essay

The dissertation is devoted to the development of methods and tools of artificial intelligence for computer generation and selection of the most promising candidate molecules for medicinal substances. Despite the improvement of technologies such as high-throughput screening, biotechnology and combinatorial chemistry, the cost of bringing a new drug to the market, adjusted for inflation, doubles every nine years. The profitability of pharmaceutical research is constantly decreasing. Therefore, there is an urgent need to optimize the process of developing new drugs, in particular, using artificial intelligence methods. The methods proposed in the work are combined into a single information system for the development of medicinal substances with specified physicochemical and biological properties, as well as predicting their suitability for synthesis in the laboratory.

Research papers

Dzvenymyra Yarish, Sofiya Garkot, Oleksandr Grygorenko, Dmytro Radchenko, Yurii Moroz, and Oleksandr Gurbych. “Advancing molecular graphs with descriptors for the prediction of chemical reaction yields”. Journal of Computational Chemistry 43.28 (2022), pp. 1887–1935.

Tymofii Nikolaienko, Oleksandr Gurbych, and Maksym Druchok. “Complex machine learning model needs complex testing: Examining predictability of molecular binding affinity by a graph neural network”. Journal of Computational Chemistry 43.10 (2022), pp. 728–739.

Maksym Druchok, Dzvenymyra Yarish, Sofiya Garkot, Tymofii Nikolaenko, and Oleksandr Gurbych. “Ensembling machine learning models to boost molecular affinity prediction”. Computational Biology and Chemistry 93 (2021)

Maksym Druchok, Dzvenymyra Yarish, Oleksandr Gurbych, and Mykola Maksymenko. “ Toward efficient generation, correction, and properties control of unique drug-like structures”. Journal of Computational Chemistry 42.11 (2021), pp. 746–760.

Grygoriy Dolgonos, Alexey Tsukanov, Sergey Psakhie Psakhie, Oleg Lukin, Oleksandr Gurbych, and Alexander Shivanyuk Shivanyuk. “Theoretical studies of capsular complexes of C2V-symmetrical re- sorcin[4]arene tetraesters with tetramethylammonium cation”. Computational and Theoretical Chemistry 1159 (2019), pp. 12–17.

Oleksandr Gurbych and Maksym Prymachenko. “Method for reductive pruning of neural networks and its applications”. Computer Systems and Information Technologies 3 (2022), pp. 40–48.

Олександр Гурбич. “Метод машинного навчання для створення нових лiкарських речовин iз заданими властивостями”. Наук. вiсник Ужгород. ун-ту 40.1 (2022), pp. 126–145.

Олександр Гурбич. “Метод мета-навчання для визначення молекулярної спорiдненостi”. Вiсник Хмельницького нацiонального унiверситету 307.2 (2022), pp. 14–24.

Files

Similar theses