Дзюбенко Г. А. Формозберігаюче наближення функцій

English version

Дисертація на здобуття ступеня доктора наук

Державний реєстраційний номер

0519U000662

Здобувач

Спеціальність

  • 01.01.01 - Математичний аналіз

10-09-2019

Спеціалізована вчена рада

Д 26.206.01

Інститут математики Національної академії наук України

Анотація

В дисертації встановлено ряд класичних за виглядом оцінок формозберігаючого наближення (ФЗН) функцій поліномами та сплайнами на відрізку і на дійсній осі, описано місце цих оцінок серед інших досягнень в теорії ФЗН і в класичній теорії наближення без обмежень, доведено низку прикладів, що свідчать про неможливість покращення вказаних результатів (за порядком наближення тощо) і зроблено стислий огляд тематики за останні тридцять років. Під "формою" розуміється зміна знаку, або зміна монотонності, або опуклості, або q-монотонності (на відрізку/періоді) у функції, а під "формозбереженням" – і у наближаючого її многочлена/полінома/сплайна. Тобто на відміну від класичного наближення без обмежень у ФЗН наближаючі многочлени/поліноми/сплайни не осцилюють як завгодно, а зберігають вказані геометричні властивості функції. Відомо, що наблизити монотонну, опуклу, або q-монотонну функцію (q>2) алгебраїчними многочленами, які збережуть її форму, цілком можливо (тобто теорема Вейєрштрасса про наближення многочленами справджується для ФЗН). В той же час, в деяких випадках порядки (або швидкості) ФЗН значно "гірші" за порядки найкращих наближень без обмежень, тоді як в інших вони "майже такі самі". Також в певних випадках класичні за формою оцінки наближення без обмежень зберігаються у ФЗН – в інших ні. В дисертації, зокрема, з'ясовані ці випадки, тобто представлено результати про справджуваність і хибність рівномірних і поточкових оцінок похибок ФЗН в термінах різних модулей гладкості.

Файли

Схожі дисертації