Дисертаційна робота присвячена розробці науково-методичного апарату прогнозування виникнення лісових пожеж на основі статистичної моделі в інтеграції з геододатками для підтримки управлінських рішень.
Метою дисертації є підвищення ефективності (оперативності та достовірності) обробки геоданих для мінімізації ризиків виникнення лісових пожеж на основі статистичної моделі Байєса для підтримки управлінських рішень.
Дослідження існуючих науково-обґрунтованих підходів в аналізі геоданих для рішення задач оцінки антропогенного впливу на довкілля та, безпосередньо, пов’язаних з розробкою методів та моделей дослідження лісових пожеж, дозволили зробити висновок про формування, за останні роки, нового пріоритетного підходу, пов'язаного із забезпеченням інформаційним системам модульності, універсальності, можливості обробки великих об’ємів статистичних даних та проведення складних розрахунків. Отже, у сучасних умовах важливим завданням є мінімізації ризиків виникнення лісових пожеж на основі статистичної моделі Байєса для підтримки управлінських рішень. Це складне завдання доцільно поділити на ряд часткових завдань, одним з яких є створення математичної моделі прогнозування виникнення лісових пожеж. Існуючі фізико-математичні моделі дослідження розповсюдження та нейтралізації лісових пожеж розглядають наслідки розповсюдження пожежі, а не самі причини виникнення. Теоретичні моделі засновані на фундаментальних фізико-математичних та хімічних законах, але верифікація таких моделей досить складна. Статистичні моделі використовують лише статистичні дані. Напівемпіричні моделі застосовують загальні фізичні закони у вигляді спрощених залежностей. Проте завдяки автоматизованим системам, які вміщують математичний апарат, відбувається спрощення моделей.
Наукова новизна одержаних результатів полягає в наступному.
Вперше розроблено архітектуру програмного забезпечення системи прогнозування виникнення лісових пожеж на основі статистичної моделі Байєса, яка відрізняється від існуючих використанням математичної моделі оцінки впливу температури навколишнього середовища на імовірність виникнення лісових пожеж, методу дешифрування супутникових знімків та математичної моделі прогнозування виникнення лісових пожеж. Використання зазначеного програмного забезпечення дозволяє розробити інформаційну систему прогнозування лісових пожеж.
Вперше розроблено математичну модель оцінки впливу температури навколишнього середовища на ймовірність виникнення лісових пожеж, яка базується на аналізі довгострокового періоду кліматичних статистичних даних, за допомогою Data Science. Модель дозволяє проводити дослідження впливу глобальних змін температури на виникнення лісових пожеж.
Удосконалено метод дешифрування супутникових знімків для ідентифікації пожежонебезпечних місць та визначення територій, уражених пожежами, яка заснована на спектральному аналізі температур яскравості. Зазначений метод при дешифруванні дозволяє виключити із знімків фрагменти, які покриті хмарами та зайняті водними об’єктами для встановлення просторово-часових характеристик пожеж. Реалізація даного методу також дозволить встановити території, уражені пожежами, та визначити їх клас пожежної небезпеки.
Вперше розроблено математичну модель прогнозування виникнення лісових пожеж на основі статистичної моделі Байєса, яка заснована на оцінюванні апостеріорних імовірностей таксаційних характеристик лісових виділів. Зазначена математична модель є основою для розробки програмного забезпечення прогнозування виникнення лісових пожеж та підвищує точність оцінювання зазначених апостеріорних імовірностей в середньому на 12-18 %.
Удосконалено методику оцінки наслідків пожеж за даними дистанційного зондування Землі, яка на відміну від існуючих, адаптована на обробку знімків низької роздільної здатності та базується на встановленні пожежного індексу. Реалізація зазначеної методики дозволить підвищити точність оцінювання породного складу та площ уражених ділянок лісових угідь в середньому на 8-12 %, а також підвищити оперативність вирішення завдань у порівнянні з традиційними методиками у 25-30 разів.
За результатами моделювання на основі використання статистичної моделі Байєса досягнуто підвищення точності прогнозування виникнення лісових пожеж, що забезпечує надійність вирішення надзвичайних ситуацій та підвищує достовірність прийняття управлінських рішень за рахунок створеного програмного комплексу в процесі виникнення катастрофічних ситуацій, спричинених лісовими пожежами.